mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
docs: fix hf embeddings install (#24577)
This commit is contained in:
parent
2d6b0bf3e3
commit
03881c6743
@ -8,87 +8,68 @@
|
|||||||
"# Sentence Transformers on Hugging Face\n",
|
"# Sentence Transformers on Hugging Face\n",
|
||||||
"\n",
|
"\n",
|
||||||
">[Hugging Face sentence-transformers](https://huggingface.co/sentence-transformers) is a Python framework for state-of-the-art sentence, text and image embeddings.\n",
|
">[Hugging Face sentence-transformers](https://huggingface.co/sentence-transformers) is a Python framework for state-of-the-art sentence, text and image embeddings.\n",
|
||||||
">One of the embedding models is used in the `HuggingFaceEmbeddings` class.\n",
|
">You can use these embedding models from the `HuggingFaceEmbeddings` class."
|
||||||
">We have also added an alias for `SentenceTransformerEmbeddings` for users who are more familiar with directly using that package.\n",
|
|
||||||
"\n",
|
|
||||||
"`sentence_transformers` package models are originating from [Sentence-BERT](https://arxiv.org/abs/1908.10084)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": null,
|
||||||
"id": "06c9f47d",
|
"id": "06c9f47d",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%pip install --upgrade --quiet langchain-huggingface"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "ff9be586",
|
||||||
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"\n",
|
"[-0.0383385568857193, 0.12346469610929489, -0.028642987832427025, 0.05365273728966713, 0.00884537026...\n"
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"%pip install --upgrade --quiet sentence_transformers > /dev/null"
|
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
||||||
]
|
"\n",
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"id": "861521a9",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from langchain_huggingface import HuggingFaceEmbeddings"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "ff9be586",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"embeddings = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n",
|
"embeddings = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n",
|
||||||
"# Equivalent to SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")"
|
"\n",
|
||||||
|
"text = \"This is a test document.\"\n",
|
||||||
|
"query_result = embeddings.embed_query(text)\n",
|
||||||
|
"\n",
|
||||||
|
"# show only the first 100 characters of the stringified vector\n",
|
||||||
|
"print(str(query_result)[:100] + \"...\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 9,
|
||||||
"id": "d0a98ae9",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"text = \"This is a test document.\""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"id": "5d6c682b",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"query_result = embeddings.embed_query(text)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 6,
|
|
||||||
"id": "bb5e74c0",
|
"id": "bb5e74c0",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[[-0.038338493555784225, 0.12346471846103668, -0.028642840683460236, 0.05365276336669922, 0.00884535...\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"doc_result = embeddings.embed_documents([text, \"This is not a test document.\"])"
|
"doc_result = embeddings.embed_documents([text, \"This is not a test document.\"])\n",
|
||||||
|
"print(str(doc_result)[:100] + \"...\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "aaad49f8",
|
"id": "d18544f5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": []
|
||||||
@ -110,7 +91,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.10.12"
|
"version": "3.11.4"
|
||||||
},
|
},
|
||||||
"vscode": {
|
"vscode": {
|
||||||
"interpreter": {
|
"interpreter": {
|
||||||
|
Loading…
Reference in New Issue
Block a user