From 03881c674358df6bc243f67a77050aa95c660bcd Mon Sep 17 00:00:00 2001 From: Erick Friis Date: Tue, 23 Jul 2024 14:03:30 -0700 Subject: [PATCH] docs: fix hf embeddings install (#24577) --- .../sentence_transformers.ipynb | 89 ++++++++----------- 1 file changed, 35 insertions(+), 54 deletions(-) diff --git a/docs/docs/integrations/text_embedding/sentence_transformers.ipynb b/docs/docs/integrations/text_embedding/sentence_transformers.ipynb index f33c0bf2f4..080fa184fe 100644 --- a/docs/docs/integrations/text_embedding/sentence_transformers.ipynb +++ b/docs/docs/integrations/text_embedding/sentence_transformers.ipynb @@ -8,87 +8,68 @@ "# Sentence Transformers on Hugging Face\n", "\n", ">[Hugging Face sentence-transformers](https://huggingface.co/sentence-transformers) is a Python framework for state-of-the-art sentence, text and image embeddings.\n", - ">One of the embedding models is used in the `HuggingFaceEmbeddings` class.\n", - ">We have also added an alias for `SentenceTransformerEmbeddings` for users who are more familiar with directly using that package.\n", - "\n", - "`sentence_transformers` package models are originating from [Sentence-BERT](https://arxiv.org/abs/1908.10084)" + ">You can use these embedding models from the `HuggingFaceEmbeddings` class." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "06c9f47d", "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain-huggingface" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ff9be586", + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" + "[-0.0383385568857193, 0.12346469610929489, -0.028642987832427025, 0.05365273728966713, 0.00884537026...\n" ] } ], "source": [ - "%pip install --upgrade --quiet sentence_transformers > /dev/null" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "861521a9", - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_huggingface import HuggingFaceEmbeddings" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ff9be586", - "metadata": {}, - "outputs": [], - "source": [ + "from langchain_huggingface import HuggingFaceEmbeddings\n", + "\n", "embeddings = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n", - "# Equivalent to SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")" + "\n", + "text = \"This is a test document.\"\n", + "query_result = embeddings.embed_query(text)\n", + "\n", + "# show only the first 100 characters of the stringified vector\n", + "print(str(query_result)[:100] + \"...\")" ] }, { "cell_type": "code", - "execution_count": 4, - "id": "d0a98ae9", - "metadata": {}, - "outputs": [], - "source": [ - "text = \"This is a test document.\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "5d6c682b", - "metadata": {}, - "outputs": [], - "source": [ - "query_result = embeddings.embed_query(text)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "bb5e74c0", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-0.038338493555784225, 0.12346471846103668, -0.028642840683460236, 0.05365276336669922, 0.00884535...\n" + ] + } + ], "source": [ - "doc_result = embeddings.embed_documents([text, \"This is not a test document.\"])" + "doc_result = embeddings.embed_documents([text, \"This is not a test document.\"])\n", + "print(str(doc_result)[:100] + \"...\")" ] }, { "cell_type": "code", "execution_count": null, - "id": "aaad49f8", + "id": "d18544f5", "metadata": {}, "outputs": [], "source": [] @@ -110,7 +91,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.11.4" }, "vscode": { "interpreter": {