langchain/libs/partners/anthropic/tests/integration_tests/test_chat_models.py

524 lines
26 KiB
Python
Raw Normal View History

"""Test ChatAnthropic chat model."""
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
import json
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
from typing import List, Optional
import pytest
from langchain_core.callbacks import CallbackManager
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
BaseMessageChunk,
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
HumanMessage,
SystemMessage,
ToolMessage,
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages
from tests.unit_tests._utils import FakeCallbackHandler
2024-03-04 15:03:51 +00:00
MODEL_NAME = "claude-3-sonnet-20240229"
def test_stream() -> None:
"""Test streaming tokens from Anthropic."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
full: Optional[BaseMessageChunk] = None
chunks_with_input_token_counts = 0
chunks_with_output_token_counts = 0
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
full = token if full is None else full + token
assert isinstance(token, AIMessageChunk)
if token.usage_metadata is not None:
if token.usage_metadata.get("input_tokens"):
chunks_with_input_token_counts += 1
elif token.usage_metadata.get("output_tokens"):
chunks_with_output_token_counts += 1
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with input or output token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
# check token usage is populated
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert full.usage_metadata["total_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert "stop_reason" in full.response_metadata
assert "stop_sequence" in full.response_metadata
async def test_astream() -> None:
"""Test streaming tokens from Anthropic."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
full: Optional[BaseMessageChunk] = None
chunks_with_input_token_counts = 0
chunks_with_output_token_counts = 0
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
full = token if full is None else full + token
assert isinstance(token, AIMessageChunk)
if token.usage_metadata is not None:
if token.usage_metadata.get("input_tokens"):
chunks_with_input_token_counts += 1
elif token.usage_metadata.get("output_tokens"):
chunks_with_output_token_counts += 1
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with input or output token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
# check token usage is populated
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert full.usage_metadata["total_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert "stop_reason" in full.response_metadata
assert "stop_sequence" in full.response_metadata
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628) - Refactor streaming to use raw events; - Add `stream_usage` class attribute and kwarg to stream methods that, if True, will include separate chunks in the stream containing usage metadata. There are two ways to implement streaming with anthropic's python sdk. They have slight differences in how they surface usage metadata. 1. [Use helper functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers). This is what we are doing now. ```python count = 1 with client.messages.stream(**params) as stream: for text in stream.text_stream: snapshot = stream.current_message_snapshot print(f"{count}: {snapshot.usage} -- {text}") count = count + 1 final_snapshot = stream.get_final_message() print(f"{count}: {final_snapshot.usage}") ``` ``` 1: Usage(input_tokens=8, output_tokens=1) -- Hello 2: Usage(input_tokens=8, output_tokens=1) -- ! 3: Usage(input_tokens=8, output_tokens=1) -- How 4: Usage(input_tokens=8, output_tokens=1) -- can 5: Usage(input_tokens=8, output_tokens=1) -- I 6: Usage(input_tokens=8, output_tokens=1) -- assist 7: Usage(input_tokens=8, output_tokens=1) -- you 8: Usage(input_tokens=8, output_tokens=1) -- today 9: Usage(input_tokens=8, output_tokens=1) -- ? 10: Usage(input_tokens=8, output_tokens=12) ``` To do this correctly, we need to emit a new chunk at the end of the stream containing the usage metadata. 2. [Handle raw events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses) ```python stream = client.messages.create(**params, stream=True) count = 1 for event in stream: print(f"{count}: {event}") count = count + 1 ``` ``` 1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start') 2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start') 3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta') 4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta') 5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta') 6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta') 7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta') 8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta') 9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta') 10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta') 11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta') 12: RawContentBlockStopEvent(index=0, type='content_block_stop') 13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12)) 14: RawMessageStopEvent(type='message_stop') ``` Here we implement the second option, in part because it should make things easier when implementing streaming tool calls in the near future. This would add two new chunks to the stream-- one at the beginning and one at the end-- with blank content and containing usage metadata. We add kwargs to the stream methods and a class attribute allowing for this behavior to be toggled. I enabled it by default. If we merge this we can add the same kwargs / attribute to OpenAI. Usage: ```python from langchain_anthropic import ChatAnthropic model = ChatAnthropic( model="claude-3-haiku-20240307", temperature=0 ) full = None for chunk in model.stream("hi"): full = chunk if full is None else full + chunk print(chunk) print(f"\nFull: {full}") ``` ``` content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8} content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12} Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20} ```
2024-06-07 13:21:46 +00:00
# test usage metadata can be excluded
model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg]
async for token in model.astream("hi"):
assert isinstance(token, AIMessageChunk)
assert token.usage_metadata is None
# check we override with kwarg
model = ChatAnthropic(model_name=MODEL_NAME) # type: ignore[call-arg]
assert model.stream_usage
async for token in model.astream("hi", stream_usage=False):
assert isinstance(token, AIMessageChunk)
assert token.usage_metadata is None
# Check expected raw API output
async_client = model._async_client
params: dict = {
"model": "claude-3-haiku-20240307",
"max_tokens": 1024,
"messages": [{"role": "user", "content": "hi"}],
"temperature": 0.0,
}
stream = await async_client.messages.create(**params, stream=True)
async for event in stream:
if event.type == "message_start":
assert event.message.usage.input_tokens > 1
# Note: this single output token included in message start event
# does not appear to contribute to overall output token counts. It
# is excluded from the total token count.
assert event.message.usage.output_tokens == 1
elif event.type == "message_delta":
assert event.usage.output_tokens > 1
else:
pass
async def test_abatch() -> None:
"""Test streaming tokens from ChatAnthropicMessages."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
async def test_async_tool_use() -> None:
llm = ChatAnthropic( # type: ignore[call-arg]
model=MODEL_NAME,
)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = await llm_with_tools.ainvoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
first = True
chunks = [] # type: ignore
async for chunk in llm_with_tools.astream(
"what's the weather in san francisco, ca"
):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_call_chunks, list)
assert len(gathered.tool_call_chunks) == 1
tool_call_chunk = gathered.tool_call_chunks[0]
assert tool_call_chunk["name"] == "get_weather"
assert isinstance(tool_call_chunk["args"], str)
assert "location" in json.loads(tool_call_chunk["args"])
def test_batch() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_invoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_system_invoke() -> None:
"""Test invoke tokens with a system message"""
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert cartographer. If asked, you are a cartographer. "
"STAY IN CHARACTER",
),
("human", "Are you a mathematician?"),
]
)
chain = prompt | llm
result = chain.invoke({})
assert isinstance(result.content, str)
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
chat = ChatAnthropic(model=MODEL_NAME) # type: ignore[call-arg]
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_anthropic_generate() -> None:
"""Test generate method of anthropic."""
chat = ChatAnthropic(model=MODEL_NAME) # type: ignore[call-arg]
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="How many toes do dogs have?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatAnthropic(model=MODEL_NAME) # type: ignore[call-arg]
message = HumanMessage(content="Hello")
response = chat.stream([message])
for token in response:
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
2024-06-03 15:21:55 +00:00
chat = ChatAnthropic( # type: ignore[call-arg]
model=MODEL_NAME,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 10 words.")
for token in chat.stream([message]):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
2024-06-03 15:21:55 +00:00
chat = ChatAnthropic( # type: ignore[call-arg]
model=MODEL_NAME,
callback_manager=callback_manager,
verbose=True,
)
chat_messages: List[BaseMessage] = [
HumanMessage(content="How many toes do dogs have?")
]
async for token in chat.astream(chat_messages):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
def test_anthropic_multimodal() -> None:
"""Test that multimodal inputs are handled correctly."""
2024-06-03 15:21:55 +00:00
chat = ChatAnthropic(model=MODEL_NAME) # type: ignore[call-arg]
messages = [
HumanMessage(
content=[
{
"type": "image_url",
"image_url": {
# langchain logo
"url": "
},
},
{"type": "text", "text": "What is this a logo for?"},
]
)
]
response = chat.invoke(messages)
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_streaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = llm.generate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
async def test_astreaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
2024-06-03 15:21:55 +00:00
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = await llm.agenerate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
2024-04-04 20:22:48 +00:00
def test_tool_use() -> None:
2024-06-03 15:21:55 +00:00
llm = ChatAnthropic( # type: ignore[call-arg]
model=MODEL_NAME,
2024-04-04 20:22:48 +00:00
)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = llm_with_tools.invoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
input = "how are you? what's the weather in san francisco, ca"
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
first = True
chunks = [] # type: ignore
for chunk in llm_with_tools.stream(input):
chunks = chunks + [chunk]
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered.content, list)
assert len(gathered.content) == 2
tool_use_block = None
for content_block in gathered.content:
assert isinstance(content_block, dict)
if content_block["type"] == "tool_use":
tool_use_block = content_block
break
assert tool_use_block is not None
assert tool_use_block["name"] == "get_weather"
assert "location" in json.loads(tool_use_block["partial_json"])
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_calls, list)
assert len(gathered.tool_calls) == 1
tool_call = gathered.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
assert tool_call["id"] is not None
# Test passing response back to model
stream = llm_with_tools.stream(
[
input,
gathered,
ToolMessage(content="sunny and warm", tool_call_id=tool_call["id"]),
]
)
chunks = [] # type: ignore
first = True
for chunk in stream:
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
2024-04-04 20:22:48 +00:00
def test_anthropic_with_empty_text_block() -> None:
"""Anthropic SDK can return an empty text block."""
@tool
def type_letter(letter: str) -> str:
"""Type the given letter."""
return "OK"
2024-06-03 15:21:55 +00:00
model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0).bind_tools( # type: ignore[call-arg]
[type_letter]
)
messages = [
SystemMessage(
content="Repeat the given string using the provided tools. Do not write "
"anything else or provide any explanations. For example, "
"if the string is 'abc', you must print the "
"letters 'a', 'b', and 'c' one at a time and in that order. "
),
HumanMessage(content="dog"),
AIMessage(
content=[
{"text": "", "type": "text"},
{
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"input": {"letter": "d"},
"name": "type_letter",
"type": "tool_use",
},
],
tool_calls=[
{
"name": "type_letter",
"args": {"letter": "d"},
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
},
],
),
ToolMessage(content="OK", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
]
model.invoke(messages)
2024-04-04 20:22:48 +00:00
def test_with_structured_output() -> None:
2024-06-03 15:21:55 +00:00
llm = ChatAnthropic( # type: ignore[call-arg]
2024-04-04 20:22:48 +00:00
model="claude-3-opus-20240229",
)
structured_llm = llm.with_structured_output(
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
)
response = structured_llm.invoke("what's the weather in san francisco, ca")
assert isinstance(response, dict)
assert response["location"]
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
@pytest.mark.parametrize("tool_choice", ["GetWeather", "auto", "any"])
def test_anthropic_bind_tools_tool_choice(tool_choice: str) -> None:
2024-06-03 15:21:55 +00:00
chat_model = ChatAnthropic( # type: ignore[call-arg]
model=MODEL_NAME,
)
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice=tool_choice)
response = chat_model_with_tools.invoke("what's the weather in ny and la")
assert isinstance(response, AIMessage)