langchain/libs/partners/anthropic/tests/integration_tests/test_chat_models.py

332 lines
18 KiB
Python
Raw Normal View History

"""Test ChatAnthropic chat model."""
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
import json
from typing import List
from langchain_core.callbacks import CallbackManager
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
HumanMessage,
SystemMessage,
ToolMessage,
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages
from tests.unit_tests._utils import FakeCallbackHandler
2024-03-04 15:03:51 +00:00
MODEL_NAME = "claude-3-sonnet-20240229"
def test_stream() -> None:
"""Test streaming tokens from Anthropic."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_astream() -> None:
"""Test streaming tokens from Anthropic."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_abatch() -> None:
"""Test streaming tokens from ChatAnthropicMessages."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_invoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_system_invoke() -> None:
"""Test invoke tokens with a system message"""
2024-03-04 15:03:51 +00:00
llm = ChatAnthropicMessages(model_name=MODEL_NAME)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert cartographer. If asked, you are a cartographer. "
"STAY IN CHARACTER",
),
("human", "Are you a mathematician?"),
]
)
chain = prompt | llm
result = chain.invoke({})
assert isinstance(result.content, str)
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
chat = ChatAnthropic(model="test")
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_anthropic_generate() -> None:
"""Test generate method of anthropic."""
chat = ChatAnthropic(model="test")
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="How many toes do dogs have?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatAnthropic(model="test")
message = HumanMessage(content="Hello")
response = chat.stream([message])
for token in response:
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
model="test",
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 10 words.")
for token in chat.stream([message]):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
model="test",
callback_manager=callback_manager,
verbose=True,
)
chat_messages: List[BaseMessage] = [
HumanMessage(content="How many toes do dogs have?")
]
async for token in chat.astream(chat_messages):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
def test_anthropic_multimodal() -> None:
"""Test that multimodal inputs are handled correctly."""
chat = ChatAnthropic(model=MODEL_NAME)
messages = [
HumanMessage(
content=[
{
"type": "image_url",
"image_url": {
# langchain logo
"url": "
},
},
{"type": "text", "text": "What is this a logo for?"},
]
)
]
response = chat.invoke(messages)
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_streaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatAnthropicMessages(
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = llm.generate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
async def test_astreaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatAnthropicMessages(
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = await llm.agenerate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
2024-04-04 20:22:48 +00:00
def test_tool_use() -> None:
llm = ChatAnthropic(
model="claude-3-opus-20240229",
)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = llm_with_tools.invoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
first = True
for chunk in llm_with_tools.stream("what's the weather in san francisco, ca"):
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_call_chunks, list)
assert len(gathered.tool_call_chunks) == 1
tool_call_chunk = gathered.tool_call_chunks[0]
assert tool_call_chunk["name"] == "get_weather"
assert isinstance(tool_call_chunk["args"], str)
assert "location" in json.loads(tool_call_chunk["args"])
2024-04-04 20:22:48 +00:00
def test_anthropic_with_empty_text_block() -> None:
"""Anthropic SDK can return an empty text block."""
@tool
def type_letter(letter: str) -> str:
"""Type the given letter."""
return "OK"
model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0).bind_tools(
[type_letter]
)
messages = [
SystemMessage(
content="Repeat the given string using the provided tools. Do not write "
"anything else or provide any explanations. For example, "
"if the string is 'abc', you must print the "
"letters 'a', 'b', and 'c' one at a time and in that order. "
),
HumanMessage(content="dog"),
AIMessage(
content=[
{"text": "", "type": "text"},
{
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"input": {"letter": "d"},
"name": "type_letter",
"type": "tool_use",
},
],
tool_calls=[
{
"name": "type_letter",
"args": {"letter": "d"},
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
},
],
),
ToolMessage(content="OK", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
]
model.invoke(messages)
2024-04-04 20:22:48 +00:00
def test_with_structured_output() -> None:
llm = ChatAnthropic(
model="claude-3-opus-20240229",
)
structured_llm = llm.with_structured_output(
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
)
response = structured_llm.invoke("what's the weather in san francisco, ca")
assert isinstance(response, dict)
assert response["location"]