langchain/templates/rag-multi-index-fusion/rag_multi_index_fusion/chain.py

103 lines
2.9 KiB
Python
Raw Normal View History

2023-11-18 22:42:22 +00:00
from operator import itemgetter
import numpy as np
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.retrievers import (
ArxivRetriever,
KayAiRetriever,
PubMedRetriever,
WikipediaRetriever,
)
from langchain.schema import StrOutputParser
from langchain.schema.runnable import (
RunnableParallel,
RunnablePassthrough,
)
from langchain.utils.math import cosine_similarity
pubmed = PubMedRetriever(top_k_results=5).with_config(run_name="pubmed")
arxiv = ArxivRetriever(top_k_results=5).with_config(run_name="arxiv")
sec = KayAiRetriever.create(
dataset_id="company", data_types=["10-K"], num_contexts=5
).with_config(run_name="sec_filings")
wiki = WikipediaRetriever(top_k_results=5, doc_content_chars_max=2000).with_config(
run_name="wiki"
)
embeddings = OpenAIEmbeddings()
def fuse_retrieved_docs(input):
results_map = input["sources"]
query = input["question"]
embedded_query = embeddings.embed_query(query)
names, docs = zip(
*((name, doc) for name, docs in results_map.items() for doc in docs)
)
embedded_docs = embeddings.embed_documents([doc.page_content for doc in docs])
similarity = cosine_similarity(
[embedded_query],
embedded_docs,
)
most_similar = np.flip(np.argsort(similarity[0]))[:5]
return [
(
names[i],
docs[i],
)
for i in most_similar
]
def format_named_docs(named_docs):
return "\n\n".join(
f"Source: {source}\n\n{doc.page_content}" for source, doc in named_docs
)
system = """Answer the user question. Use the following sources to help \
answer the question. If you don't know the answer say "I'm not sure, I couldn't \
find information on {{topic}}."
Sources:
{sources}"""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
retrieve_all = RunnableParallel(
{"ArXiv": arxiv, "Wikipedia": wiki, "PubMed": pubmed, "SEC 10-K Forms": sec}
).with_config(run_name="retrieve_all")
class Question(BaseModel):
__root__: str
2023-11-18 22:42:22 +00:00
answer_chain = (
{
"question": itemgetter("question"),
"sources": lambda x: format_named_docs(x["sources"]),
}
| prompt
| ChatOpenAI(model="gpt-3.5-turbo-1106")
| StrOutputParser()
).with_config(run_name="answer")
chain = (
(
RunnableParallel(
{"question": RunnablePassthrough(), "sources": retrieve_all}
).with_config(run_name="add_sources")
2023-11-18 22:42:22 +00:00
| RunnablePassthrough.assign(sources=fuse_retrieved_docs).with_config(
run_name="fuse"
)
| RunnablePassthrough.assign(answer=answer_chain).with_config(
run_name="add_answer"
)
)
.with_config(run_name="QA with fused results")
.with_types(input_type=Question)
)