from operator import itemgetter import numpy as np from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate from langchain.pydantic_v1 import BaseModel from langchain.retrievers import ( ArxivRetriever, KayAiRetriever, PubMedRetriever, WikipediaRetriever, ) from langchain.schema import StrOutputParser from langchain.schema.runnable import ( RunnableParallel, RunnablePassthrough, ) from langchain.utils.math import cosine_similarity pubmed = PubMedRetriever(top_k_results=5).with_config(run_name="pubmed") arxiv = ArxivRetriever(top_k_results=5).with_config(run_name="arxiv") sec = KayAiRetriever.create( dataset_id="company", data_types=["10-K"], num_contexts=5 ).with_config(run_name="sec_filings") wiki = WikipediaRetriever(top_k_results=5, doc_content_chars_max=2000).with_config( run_name="wiki" ) embeddings = OpenAIEmbeddings() def fuse_retrieved_docs(input): results_map = input["sources"] query = input["question"] embedded_query = embeddings.embed_query(query) names, docs = zip( *((name, doc) for name, docs in results_map.items() for doc in docs) ) embedded_docs = embeddings.embed_documents([doc.page_content for doc in docs]) similarity = cosine_similarity( [embedded_query], embedded_docs, ) most_similar = np.flip(np.argsort(similarity[0]))[:5] return [ ( names[i], docs[i], ) for i in most_similar ] def format_named_docs(named_docs): return "\n\n".join( f"Source: {source}\n\n{doc.page_content}" for source, doc in named_docs ) system = """Answer the user question. Use the following sources to help \ answer the question. If you don't know the answer say "I'm not sure, I couldn't \ find information on {{topic}}." Sources: {sources}""" prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")]) retrieve_all = RunnableParallel( {"ArXiv": arxiv, "Wikipedia": wiki, "PubMed": pubmed, "SEC 10-K Forms": sec} ).with_config(run_name="retrieve_all") class Question(BaseModel): __root__: str answer_chain = ( { "question": itemgetter("question"), "sources": lambda x: format_named_docs(x["sources"]), } | prompt | ChatOpenAI(model="gpt-3.5-turbo-1106") | StrOutputParser() ).with_config(run_name="answer") chain = ( ( RunnableParallel( {"question": RunnablePassthrough(), "sources": retrieve_all} ).with_config(run_name="add_sources") | RunnablePassthrough.assign(sources=fuse_retrieved_docs).with_config( run_name="fuse" ) | RunnablePassthrough.assign(answer=answer_chain).with_config( run_name="add_answer" ) ) .with_config(run_name="QA with fused results") .with_types(input_type=Question) )