langchain/libs/partners/qdrant/tests/integration_tests/test_add_texts.py

136 lines
4.6 KiB
Python
Raw Normal View History

import uuid
from typing import Optional
import pytest
from langchain_core.documents import Document
from langchain_qdrant import Qdrant
from tests.integration_tests.common import (
ConsistentFakeEmbeddings,
assert_documents_equals,
)
@pytest.mark.parametrize("batch_size", [1, 64])
@pytest.mark.parametrize("vector_name", [None, "my-vector"])
def test_qdrant_add_documents_extends_existing_collection(
batch_size: int, vector_name: Optional[str]
) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch: Qdrant = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
location=":memory:",
batch_size=batch_size,
vector_name=vector_name,
)
new_texts = ["foobar", "foobaz"]
docsearch.add_documents(
[Document(page_content=content) for content in new_texts], batch_size=batch_size
)
output = docsearch.similarity_search("foobar", k=1)
# ConsistentFakeEmbeddings return the same query embedding as the first document
# embedding computed in `embedding.embed_documents`. Thus, "foo" embedding is the
# same as "foobar" embedding
assert_documents_equals(output, [Document(page_content="foobar")])
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_add_texts_returns_all_ids(batch_size: int) -> None:
"""Test end to end Qdrant.add_texts returns unique ids."""
docsearch: Qdrant = Qdrant.from_texts(
["foobar"],
ConsistentFakeEmbeddings(),
location=":memory:",
batch_size=batch_size,
)
ids = docsearch.add_texts(["foo", "bar", "baz"])
assert 3 == len(ids)
assert 3 == len(set(ids))
@pytest.mark.parametrize("vector_name", [None, "my-vector"])
def test_qdrant_add_texts_stores_duplicated_texts(vector_name: Optional[str]) -> None:
"""Test end to end Qdrant.add_texts stores duplicated texts separately."""
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
client = QdrantClient(":memory:")
collection_name = uuid.uuid4().hex
vectors_config = rest.VectorParams(size=10, distance=rest.Distance.COSINE)
if vector_name is not None:
vectors_config = {vector_name: vectors_config} # type: ignore[assignment]
client.recreate_collection(collection_name, vectors_config=vectors_config)
vec_store = Qdrant(
client,
collection_name,
embeddings=ConsistentFakeEmbeddings(),
vector_name=vector_name,
)
ids = vec_store.add_texts(["abc", "abc"], [{"a": 1}, {"a": 2}])
assert 2 == len(set(ids))
assert 2 == client.count(collection_name).count
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_add_texts_stores_ids(batch_size: int) -> None:
"""Test end to end Qdrant.add_texts stores provided ids."""
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
ids = [
"fa38d572-4c31-4579-aedc-1960d79df6df",
"cdc1aa36-d6ab-4fb2-8a94-56674fd27484",
]
client = QdrantClient(":memory:")
collection_name = uuid.uuid4().hex
client.recreate_collection(
collection_name,
vectors_config=rest.VectorParams(size=10, distance=rest.Distance.COSINE),
)
vec_store = Qdrant(client, collection_name, ConsistentFakeEmbeddings())
returned_ids = vec_store.add_texts(["abc", "def"], ids=ids, batch_size=batch_size)
assert all(first == second for first, second in zip(ids, returned_ids))
assert 2 == client.count(collection_name).count
stored_ids = [point.id for point in client.scroll(collection_name)[0]]
assert set(ids) == set(stored_ids)
@pytest.mark.parametrize("vector_name", ["custom-vector"])
def test_qdrant_add_texts_stores_embeddings_as_named_vectors(vector_name: str) -> None:
"""Test end to end Qdrant.add_texts stores named vectors if name is provided."""
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
collection_name = uuid.uuid4().hex
client = QdrantClient(":memory:")
client.recreate_collection(
collection_name,
vectors_config={
vector_name: rest.VectorParams(size=10, distance=rest.Distance.COSINE)
},
)
vec_store = Qdrant(
client,
collection_name,
ConsistentFakeEmbeddings(),
vector_name=vector_name,
)
vec_store.add_texts(["lorem", "ipsum", "dolor", "sit", "amet"])
assert 5 == client.count(collection_name).count
assert all(
vector_name in point.vector # type: ignore[operator]
for point in client.scroll(collection_name, with_vectors=True)[0]
)