import uuid from typing import Optional import pytest from langchain_core.documents import Document from langchain_qdrant import Qdrant from tests.integration_tests.common import ( ConsistentFakeEmbeddings, assert_documents_equals, ) @pytest.mark.parametrize("batch_size", [1, 64]) @pytest.mark.parametrize("vector_name", [None, "my-vector"]) def test_qdrant_add_documents_extends_existing_collection( batch_size: int, vector_name: Optional[str] ) -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch: Qdrant = Qdrant.from_texts( texts, ConsistentFakeEmbeddings(), location=":memory:", batch_size=batch_size, vector_name=vector_name, ) new_texts = ["foobar", "foobaz"] docsearch.add_documents( [Document(page_content=content) for content in new_texts], batch_size=batch_size ) output = docsearch.similarity_search("foobar", k=1) # ConsistentFakeEmbeddings return the same query embedding as the first document # embedding computed in `embedding.embed_documents`. Thus, "foo" embedding is the # same as "foobar" embedding assert_documents_equals(output, [Document(page_content="foobar")]) @pytest.mark.parametrize("batch_size", [1, 64]) def test_qdrant_add_texts_returns_all_ids(batch_size: int) -> None: """Test end to end Qdrant.add_texts returns unique ids.""" docsearch: Qdrant = Qdrant.from_texts( ["foobar"], ConsistentFakeEmbeddings(), location=":memory:", batch_size=batch_size, ) ids = docsearch.add_texts(["foo", "bar", "baz"]) assert 3 == len(ids) assert 3 == len(set(ids)) @pytest.mark.parametrize("vector_name", [None, "my-vector"]) def test_qdrant_add_texts_stores_duplicated_texts(vector_name: Optional[str]) -> None: """Test end to end Qdrant.add_texts stores duplicated texts separately.""" from qdrant_client import QdrantClient from qdrant_client.http import models as rest client = QdrantClient(":memory:") collection_name = uuid.uuid4().hex vectors_config = rest.VectorParams(size=10, distance=rest.Distance.COSINE) if vector_name is not None: vectors_config = {vector_name: vectors_config} # type: ignore[assignment] client.recreate_collection(collection_name, vectors_config=vectors_config) vec_store = Qdrant( client, collection_name, embeddings=ConsistentFakeEmbeddings(), vector_name=vector_name, ) ids = vec_store.add_texts(["abc", "abc"], [{"a": 1}, {"a": 2}]) assert 2 == len(set(ids)) assert 2 == client.count(collection_name).count @pytest.mark.parametrize("batch_size", [1, 64]) def test_qdrant_add_texts_stores_ids(batch_size: int) -> None: """Test end to end Qdrant.add_texts stores provided ids.""" from qdrant_client import QdrantClient from qdrant_client.http import models as rest ids = [ "fa38d572-4c31-4579-aedc-1960d79df6df", "cdc1aa36-d6ab-4fb2-8a94-56674fd27484", ] client = QdrantClient(":memory:") collection_name = uuid.uuid4().hex client.recreate_collection( collection_name, vectors_config=rest.VectorParams(size=10, distance=rest.Distance.COSINE), ) vec_store = Qdrant(client, collection_name, ConsistentFakeEmbeddings()) returned_ids = vec_store.add_texts(["abc", "def"], ids=ids, batch_size=batch_size) assert all(first == second for first, second in zip(ids, returned_ids)) assert 2 == client.count(collection_name).count stored_ids = [point.id for point in client.scroll(collection_name)[0]] assert set(ids) == set(stored_ids) @pytest.mark.parametrize("vector_name", ["custom-vector"]) def test_qdrant_add_texts_stores_embeddings_as_named_vectors(vector_name: str) -> None: """Test end to end Qdrant.add_texts stores named vectors if name is provided.""" from qdrant_client import QdrantClient from qdrant_client.http import models as rest collection_name = uuid.uuid4().hex client = QdrantClient(":memory:") client.recreate_collection( collection_name, vectors_config={ vector_name: rest.VectorParams(size=10, distance=rest.Distance.COSINE) }, ) vec_store = Qdrant( client, collection_name, ConsistentFakeEmbeddings(), vector_name=vector_name, ) vec_store.add_texts(["lorem", "ipsum", "dolor", "sit", "amet"]) assert 5 == client.count(collection_name).count assert all( vector_name in point.vector # type: ignore[operator] for point in client.scroll(collection_name, with_vectors=True)[0] )