2023-10-26 01:47:42 +00:00
|
|
|
# Load
|
|
|
|
from langchain.document_loaders import WebBaseLoader
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.prompts import ChatPromptTemplate
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
from langchain.vectorstores import Chroma
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.chat_models import ChatOllama
|
|
|
|
from langchain_community.embeddings import GPT4AllEmbeddings
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
|
|
|
data = loader.load()
|
|
|
|
|
|
|
|
# Split
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
|
|
all_splits = text_splitter.split_documents(data)
|
|
|
|
|
|
|
|
# Add to vectorDB
|
2023-10-27 02:44:30 +00:00
|
|
|
vectorstore = Chroma.from_documents(
|
|
|
|
documents=all_splits,
|
|
|
|
collection_name="rag-private",
|
|
|
|
embedding=GPT4AllEmbeddings(),
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
# Prompt
|
2023-10-26 01:47:42 +00:00
|
|
|
# Optionally, pull from the Hub
|
|
|
|
# from langchain import hub
|
|
|
|
# prompt = hub.pull("rlm/rag-prompt")
|
|
|
|
# Or, define your own:
|
|
|
|
template = """Answer the question based only on the following context:
|
|
|
|
{context}
|
|
|
|
|
|
|
|
Question: {question}
|
|
|
|
"""
|
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
# LLM
|
|
|
|
# Select the LLM that you downloaded
|
2023-10-29 05:13:22 +00:00
|
|
|
ollama_llm = "llama2:7b-chat"
|
2023-10-26 01:47:42 +00:00
|
|
|
model = ChatOllama(model=ollama_llm)
|
|
|
|
|
|
|
|
# RAG chain
|
|
|
|
chain = (
|
|
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
|
|
| prompt
|
|
|
|
| model
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
2023-10-29 05:13:22 +00:00
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
|
2023-10-29 05:13:22 +00:00
|
|
|
# Add typing for input
|
|
|
|
class Question(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
|
2023-10-29 05:13:22 +00:00
|
|
|
chain = chain.with_types(input_type=Question)
|