langchain/templates/rag-chroma-private/rag_chroma_private/chain.py

60 lines
1.6 KiB
Python
Raw Normal View History

# Load
2023-10-30 18:27:44 +00:00
from langchain.chat_models import ChatOllama
from langchain.document_loaders import WebBaseLoader
2023-10-27 02:44:30 +00:00
from langchain.embeddings import GPT4AllEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
2023-10-27 02:44:30 +00:00
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()
# Split
2023-10-27 02:44:30 +00:00
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
# Add to vectorDB
2023-10-27 02:44:30 +00:00
vectorstore = Chroma.from_documents(
documents=all_splits,
collection_name="rag-private",
embedding=GPT4AllEmbeddings(),
)
retriever = vectorstore.as_retriever()
2023-10-27 02:44:30 +00:00
# Prompt
# Optionally, pull from the Hub
# from langchain import hub
# prompt = hub.pull("rlm/rag-prompt")
# Or, define your own:
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# LLM
# Select the LLM that you downloaded
ollama_llm = "llama2:7b-chat"
model = ChatOllama(model=ollama_llm)
# RAG chain
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
2023-10-29 22:50:09 +00:00
# Add typing for input
class Question(BaseModel):
__root__: str
2023-10-29 22:50:09 +00:00
chain = chain.with_types(input_type=Question)