2023-10-27 02:44:30 +00:00
|
|
|
from typing import List, Tuple
|
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.agents import AgentExecutor
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.agents.format_scratchpad import format_xml
|
|
|
|
from langchain.chat_models import ChatAnthropic
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.schema import AIMessage, HumanMessage
|
2023-10-30 19:51:00 +00:00
|
|
|
from langchain.tools import DuckDuckGoSearchRun
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.tools.render import render_text_description
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
2023-10-27 02:44:30 +00:00
|
|
|
|
|
|
|
from xml_agent.prompts import conversational_prompt, parse_output
|
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
|
|
|
buffer = []
|
|
|
|
for human, ai in chat_history:
|
|
|
|
buffer.append(HumanMessage(content=human))
|
|
|
|
buffer.append(AIMessage(content=ai))
|
|
|
|
return buffer
|
|
|
|
|
|
|
|
|
|
|
|
model = ChatAnthropic(model="claude-2")
|
|
|
|
|
2023-10-30 19:51:00 +00:00
|
|
|
tools = [DuckDuckGoSearchRun()]
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
prompt = conversational_prompt.partial(
|
|
|
|
tools=render_text_description(tools),
|
|
|
|
tool_names=", ".join([t.name for t in tools]),
|
|
|
|
)
|
|
|
|
llm_with_stop = model.bind(stop=["</tool_input>"])
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
agent = (
|
|
|
|
{
|
|
|
|
"question": lambda x: x["question"],
|
|
|
|
"agent_scratchpad": lambda x: format_xml(x["intermediate_steps"]),
|
|
|
|
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
|
|
|
}
|
|
|
|
| prompt
|
|
|
|
| llm_with_stop
|
|
|
|
| parse_output
|
|
|
|
)
|
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
class AgentInput(BaseModel):
|
|
|
|
question: str
|
2023-10-30 22:19:32 +00:00
|
|
|
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
|
2023-10-26 01:47:42 +00:00
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
|
|
|
agent_executor = AgentExecutor(
|
|
|
|
agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
|
|
|
|
).with_types(input_type=AgentInput)
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
agent_executor = agent_executor | (lambda x: x["output"])
|