mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
|
from langchain.chat_models import ChatAnthropic
|
||
|
from langchain.tools.render import render_text_description
|
||
|
from langchain.agents.format_scratchpad import format_xml
|
||
|
from langchain.agents import AgentExecutor
|
||
|
from langchain.retrievers.you import YouRetriever
|
||
|
from langchain.agents.agent_toolkits.conversational_retrieval.tool import create_retriever_tool
|
||
|
from langchain.pydantic_v1 import BaseModel
|
||
|
from xml_agent.prompts import conversational_prompt, parse_output
|
||
|
from langchain.schema import AIMessage, HumanMessage
|
||
|
from typing import List, Tuple
|
||
|
|
||
|
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||
|
buffer = []
|
||
|
for human, ai in chat_history:
|
||
|
buffer.append(HumanMessage(content=human))
|
||
|
buffer.append(AIMessage(content=ai))
|
||
|
return buffer
|
||
|
|
||
|
|
||
|
model = ChatAnthropic(model="claude-2")
|
||
|
|
||
|
# Fake Tool
|
||
|
retriever = YouRetriever(k=5)
|
||
|
retriever_tool = create_retriever_tool(retriever, "search", "Use this to search for current events.")
|
||
|
|
||
|
tools = [retriever_tool]
|
||
|
|
||
|
prompt = conversational_prompt.partial(
|
||
|
tools=render_text_description(tools),
|
||
|
tool_names=", ".join([t.name for t in tools]),
|
||
|
)
|
||
|
llm_with_stop = model.bind(stop=["</tool_input>"])
|
||
|
|
||
|
agent = {
|
||
|
"question": lambda x: x["question"],
|
||
|
"agent_scratchpad": lambda x: format_xml(x['intermediate_steps']),
|
||
|
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||
|
} | prompt | llm_with_stop | parse_output
|
||
|
|
||
|
class AgentInput(BaseModel):
|
||
|
question: str
|
||
|
chat_history: List[Tuple[str, str]]
|
||
|
|
||
|
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True).with_types(
|
||
|
input_type=AgentInput
|
||
|
)
|
||
|
|
||
|
agent_executor = agent_executor | (lambda x: x["output"])
|