langchain/libs/community/tests/unit_tests/embeddings/test_gradient_ai.py

129 lines
3.7 KiB
Python
Raw Normal View History

import sys
from typing import Any, Dict, List
from unittest.mock import MagicMock, patch
import pytest
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
from langchain_community.embeddings import GradientEmbeddings
_MODEL_ID = "my_model_valid_id"
_GRADIENT_SECRET = "secret_valid_token_123456"
_GRADIENT_WORKSPACE_ID = "valid_workspace_12345"
_GRADIENT_BASE_URL = "https://api.gradient.ai/api"
_DOCUMENTS = [
"pizza",
"another long pizza",
"a document",
"another long pizza",
"super long document with many tokens",
]
class GradientEmbeddingsModel(MagicMock):
"""MockGradientModel."""
def embed(self, inputs: List[Dict[str, str]]) -> Any:
"""Just duplicate the query m times."""
output = MagicMock()
embeddings = []
for i, inp in enumerate(inputs):
# verify correct ordering
inp = inp["input"]
if "pizza" in inp:
v = [1.0, 0.0, 0.0]
elif "document" in inp:
v = [0.0, 0.9, 0.0]
else:
v = [0.0, 0.0, -1.0]
if len(inp) > 10:
v[2] += 0.1
output_inner = MagicMock()
output_inner.embedding = v
embeddings.append(output_inner)
output.embeddings = embeddings
return output
async def aembed(self, *args) -> Any:
return self.embed(*args)
class MockGradient(MagicMock):
"""Mock Gradient package."""
def __init__(self, access_token: str, workspace_id, host):
assert access_token == _GRADIENT_SECRET
assert workspace_id == _GRADIENT_WORKSPACE_ID
assert host == _GRADIENT_BASE_URL
def get_embeddings_model(self, slug: str) -> GradientEmbeddingsModel:
assert slug == _MODEL_ID
return GradientEmbeddingsModel()
def close(self) -> None:
"""Mock Gradient close."""
return
class MockGradientaiPackage(MagicMock):
"""Mock Gradientai package."""
Gradient = MockGradient
__version__ = "1.4.0"
def test_gradient_llm_sync() -> None:
with patch.dict(sys.modules, {"gradientai": MockGradientaiPackage()}):
embedder = GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)
assert embedder.gradient_access_token == _GRADIENT_SECRET
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
assert embedder.model == _MODEL_ID
response = embedder.embed_documents(_DOCUMENTS)
want = [
[1.0, 0.0, 0.0], # pizza
[1.0, 0.0, 0.1], # pizza + long
[0.0, 0.9, 0.0], # doc
[1.0, 0.0, 0.1], # pizza + long
[0.0, 0.9, 0.1], # doc + long
]
assert response == want
def test_gradient_wrong_setup() -> None:
with pytest.raises(Exception):
GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token="", # empty
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)
def test_gradient_wrong_setup2() -> None:
with pytest.raises(Exception):
GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id="", # empty
model=_MODEL_ID,
)
def test_gradient_wrong_setup3() -> None:
with pytest.raises(Exception):
GradientEmbeddings(
gradient_api_url="-", # empty
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)