2023-09-23 23:10:23 +00:00
|
|
|
from typing import Dict
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from pytest_mock import MockerFixture
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_community.embeddings import GradientEmbeddings
|
2023-09-23 23:10:23 +00:00
|
|
|
|
|
|
|
_MODEL_ID = "my_model_valid_id"
|
|
|
|
_GRADIENT_SECRET = "secret_valid_token_123456"
|
|
|
|
_GRADIENT_WORKSPACE_ID = "valid_workspace_12345"
|
|
|
|
_GRADIENT_BASE_URL = "https://api.gradient.ai/api"
|
|
|
|
_DOCUMENTS = [
|
|
|
|
"pizza",
|
|
|
|
"another pizza",
|
|
|
|
"a document",
|
|
|
|
"another pizza",
|
|
|
|
"super long document with many tokens",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class MockResponse:
|
|
|
|
def __init__(self, json_data: Dict, status_code: int):
|
|
|
|
self.json_data = json_data
|
|
|
|
self.status_code = status_code
|
|
|
|
|
|
|
|
def json(self) -> Dict:
|
|
|
|
return self.json_data
|
|
|
|
|
|
|
|
|
|
|
|
def mocked_requests_post(
|
|
|
|
url: str,
|
|
|
|
headers: dict,
|
|
|
|
json: dict,
|
|
|
|
) -> MockResponse:
|
|
|
|
assert url.startswith(_GRADIENT_BASE_URL)
|
|
|
|
assert _MODEL_ID in url
|
|
|
|
assert json
|
|
|
|
assert headers
|
|
|
|
|
|
|
|
assert headers.get("authorization") == f"Bearer {_GRADIENT_SECRET}"
|
|
|
|
assert headers.get("x-gradient-workspace-id") == f"{_GRADIENT_WORKSPACE_ID}"
|
|
|
|
|
|
|
|
assert "inputs" in json and "input" in json["inputs"][0]
|
|
|
|
embeddings = []
|
|
|
|
for inp in json["inputs"]:
|
|
|
|
# verify correct ordering
|
|
|
|
inp = inp["input"]
|
|
|
|
if "pizza" in inp:
|
|
|
|
v = [1.0, 0.0, 0.0]
|
|
|
|
elif "document" in inp:
|
|
|
|
v = [0.0, 0.9, 0.0]
|
|
|
|
else:
|
|
|
|
v = [0.0, 0.0, -1.0]
|
|
|
|
if len(inp) > 10:
|
|
|
|
v[2] += 0.1
|
|
|
|
embeddings.append({"embedding": v})
|
|
|
|
|
|
|
|
return MockResponse(
|
|
|
|
json_data={"embeddings": embeddings},
|
|
|
|
status_code=200,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_gradient_llm_sync(
|
|
|
|
mocker: MockerFixture,
|
|
|
|
) -> None:
|
|
|
|
mocker.patch("requests.post", side_effect=mocked_requests_post)
|
|
|
|
|
|
|
|
embedder = GradientEmbeddings(
|
|
|
|
gradient_api_url=_GRADIENT_BASE_URL,
|
|
|
|
gradient_access_token=_GRADIENT_SECRET,
|
|
|
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
|
|
|
model=_MODEL_ID,
|
|
|
|
)
|
|
|
|
assert embedder.gradient_access_token == _GRADIENT_SECRET
|
|
|
|
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
|
|
|
|
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
|
|
|
|
assert embedder.model == _MODEL_ID
|
|
|
|
|
|
|
|
response = embedder.embed_documents(_DOCUMENTS)
|
|
|
|
want = [
|
|
|
|
[1.0, 0.0, 0.0], # pizza
|
|
|
|
[1.0, 0.0, 0.1], # pizza + long
|
|
|
|
[0.0, 0.9, 0.0], # doc
|
|
|
|
[1.0, 0.0, 0.1], # pizza + long
|
|
|
|
[0.0, 0.9, 0.1], # doc + long
|
|
|
|
]
|
|
|
|
|
|
|
|
assert response == want
|
|
|
|
|
|
|
|
|
|
|
|
def test_gradient_llm_large_batch_size(
|
|
|
|
mocker: MockerFixture,
|
|
|
|
) -> None:
|
|
|
|
mocker.patch("requests.post", side_effect=mocked_requests_post)
|
|
|
|
|
|
|
|
embedder = GradientEmbeddings(
|
|
|
|
gradient_api_url=_GRADIENT_BASE_URL,
|
|
|
|
gradient_access_token=_GRADIENT_SECRET,
|
|
|
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
|
|
|
model=_MODEL_ID,
|
|
|
|
)
|
|
|
|
assert embedder.gradient_access_token == _GRADIENT_SECRET
|
|
|
|
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
|
|
|
|
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
|
|
|
|
assert embedder.model == _MODEL_ID
|
|
|
|
|
|
|
|
response = embedder.embed_documents(_DOCUMENTS * 1024)
|
|
|
|
want = [
|
|
|
|
[1.0, 0.0, 0.0], # pizza
|
|
|
|
[1.0, 0.0, 0.1], # pizza + long
|
|
|
|
[0.0, 0.9, 0.0], # doc
|
|
|
|
[1.0, 0.0, 0.1], # pizza + long
|
|
|
|
[0.0, 0.9, 0.1], # doc + long
|
|
|
|
] * 1024
|
|
|
|
|
|
|
|
assert response == want
|
|
|
|
|
|
|
|
|
|
|
|
def test_gradient_wrong_setup(
|
|
|
|
mocker: MockerFixture,
|
|
|
|
) -> None:
|
|
|
|
mocker.patch("requests.post", side_effect=mocked_requests_post)
|
|
|
|
|
|
|
|
with pytest.raises(Exception):
|
|
|
|
GradientEmbeddings(
|
|
|
|
gradient_api_url=_GRADIENT_BASE_URL,
|
|
|
|
gradient_access_token="", # empty
|
|
|
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
|
|
|
model=_MODEL_ID,
|
|
|
|
)
|
|
|
|
|
|
|
|
with pytest.raises(Exception):
|
|
|
|
GradientEmbeddings(
|
|
|
|
gradient_api_url=_GRADIENT_BASE_URL,
|
|
|
|
gradient_access_token=_GRADIENT_SECRET,
|
|
|
|
gradient_workspace_id="", # empty
|
|
|
|
model=_MODEL_ID,
|
|
|
|
)
|
|
|
|
|
|
|
|
with pytest.raises(Exception):
|
|
|
|
GradientEmbeddings(
|
|
|
|
gradient_api_url="-", # empty
|
|
|
|
gradient_access_token=_GRADIENT_SECRET,
|
|
|
|
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
|
|
|
|
model=_MODEL_ID,
|
|
|
|
)
|