langchain/libs/community/tests/unit_tests/embeddings/test_gradient_ai.py

148 lines
4.1 KiB
Python
Raw Normal View History

from typing import Dict
import pytest
from pytest_mock import MockerFixture
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
from langchain_community.embeddings import GradientEmbeddings
_MODEL_ID = "my_model_valid_id"
_GRADIENT_SECRET = "secret_valid_token_123456"
_GRADIENT_WORKSPACE_ID = "valid_workspace_12345"
_GRADIENT_BASE_URL = "https://api.gradient.ai/api"
_DOCUMENTS = [
"pizza",
"another pizza",
"a document",
"another pizza",
"super long document with many tokens",
]
class MockResponse:
def __init__(self, json_data: Dict, status_code: int):
self.json_data = json_data
self.status_code = status_code
def json(self) -> Dict:
return self.json_data
def mocked_requests_post(
url: str,
headers: dict,
json: dict,
) -> MockResponse:
assert url.startswith(_GRADIENT_BASE_URL)
assert _MODEL_ID in url
assert json
assert headers
assert headers.get("authorization") == f"Bearer {_GRADIENT_SECRET}"
assert headers.get("x-gradient-workspace-id") == f"{_GRADIENT_WORKSPACE_ID}"
assert "inputs" in json and "input" in json["inputs"][0]
embeddings = []
for inp in json["inputs"]:
# verify correct ordering
inp = inp["input"]
if "pizza" in inp:
v = [1.0, 0.0, 0.0]
elif "document" in inp:
v = [0.0, 0.9, 0.0]
else:
v = [0.0, 0.0, -1.0]
if len(inp) > 10:
v[2] += 0.1
embeddings.append({"embedding": v})
return MockResponse(
json_data={"embeddings": embeddings},
status_code=200,
)
def test_gradient_llm_sync(
mocker: MockerFixture,
) -> None:
mocker.patch("requests.post", side_effect=mocked_requests_post)
embedder = GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)
assert embedder.gradient_access_token == _GRADIENT_SECRET
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
assert embedder.model == _MODEL_ID
response = embedder.embed_documents(_DOCUMENTS)
want = [
[1.0, 0.0, 0.0], # pizza
[1.0, 0.0, 0.1], # pizza + long
[0.0, 0.9, 0.0], # doc
[1.0, 0.0, 0.1], # pizza + long
[0.0, 0.9, 0.1], # doc + long
]
assert response == want
def test_gradient_llm_large_batch_size(
mocker: MockerFixture,
) -> None:
mocker.patch("requests.post", side_effect=mocked_requests_post)
embedder = GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)
assert embedder.gradient_access_token == _GRADIENT_SECRET
assert embedder.gradient_api_url == _GRADIENT_BASE_URL
assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID
assert embedder.model == _MODEL_ID
response = embedder.embed_documents(_DOCUMENTS * 1024)
want = [
[1.0, 0.0, 0.0], # pizza
[1.0, 0.0, 0.1], # pizza + long
[0.0, 0.9, 0.0], # doc
[1.0, 0.0, 0.1], # pizza + long
[0.0, 0.9, 0.1], # doc + long
] * 1024
assert response == want
def test_gradient_wrong_setup(
mocker: MockerFixture,
) -> None:
mocker.patch("requests.post", side_effect=mocked_requests_post)
with pytest.raises(Exception):
GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token="", # empty
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)
with pytest.raises(Exception):
GradientEmbeddings(
gradient_api_url=_GRADIENT_BASE_URL,
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id="", # empty
model=_MODEL_ID,
)
with pytest.raises(Exception):
GradientEmbeddings(
gradient_api_url="-", # empty
gradient_access_token=_GRADIENT_SECRET,
gradient_workspace_id=_GRADIENT_WORKSPACE_ID,
model=_MODEL_ID,
)