langchain/docs/extras/integrations/document_loaders/jupyter_notebook.ipynb

105 lines
3.6 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Jupyter Notebook\n",
"\n",
">[Jupyter Notebook](https://en.wikipedia.org/wiki/Project_Jupyter#Applications) (formerly `IPython Notebook`) is a web-based interactive computational environment for creating notebook documents.\n",
"\n",
"This notebook covers how to load data from a `Jupyter notebook (.html)` into a format suitable by LangChain."
]
},
{
"cell_type": "code",
2023-02-24 15:38:24 +00:00
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import NotebookLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"loader = NotebookLoader(\n",
" \"example_data/notebook.html\",\n",
" include_outputs=True,\n",
" max_output_length=20,\n",
" remove_newline=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`NotebookLoader.load()` loads the `.html` notebook file into a `Document` object.\n",
"\n",
"**Parameters**:\n",
"\n",
"* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\n",
"* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\n",
"* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\n",
"* `traceback` (bool): whether to include full traceback (default is False)."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
2023-02-24 15:38:24 +00:00
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='\\'markdown\\' cell: \\'[\\'# Notebook\\', \\'\\', \\'This notebook covers how to load data from an .html notebook into a format suitable by LangChain.\\']\\'\\n\\n \\'code\\' cell: \\'[\\'from langchain.document_loaders import NotebookLoader\\']\\'\\n\\n \\'code\\' cell: \\'[\\'loader = NotebookLoader(\"example_data/notebook.html\")\\']\\'\\n\\n \\'markdown\\' cell: \\'[\\'`NotebookLoader.load()` loads the `.html` notebook file into a `Document` object.\\', \\'\\', \\'**Parameters**:\\', \\'\\', \\'* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\\', \\'* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\\', \\'* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\\', \\'* `traceback` (bool): whether to include full traceback (default is False).\\']\\'\\n\\n \\'code\\' cell: \\'[\\'loader.load(include_outputs=True, max_output_length=20, remove_newline=True)\\']\\'\\n\\n', metadata={'source': 'example_data/notebook.html'})]"
2023-02-24 15:38:24 +00:00
]
},
"execution_count": 3,
2023-02-24 15:38:24 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2023-02-24 15:38:24 +00:00
"loader.load()"
]
}
],
"metadata": {
"kernelspec": {
2023-02-24 15:38:24 +00:00
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "981b6680a42bdb5eb22187741e1607b3aae2cf73db800d1af1f268d1de6a1f70"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}