mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
cleanup (#1274)
This commit is contained in:
parent
7e8f832cd6
commit
96db6ed073
@ -1,7 +1,6 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@ -12,7 +11,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -21,15 +20,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = NotebookLoader(\"example_data/notebook.ipynb\")"
|
||||
"loader = NotebookLoader(\"example_data/notebook.ipynb\", include_outputs=True, max_output_length=20, remove_newline=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@ -43,19 +41,37 @@
|
||||
"* `traceback` (bool): whether to include full traceback (default is False)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='\\'markdown\\' cell: \\'[\\'# Notebook\\', \\'\\', \\'This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.\\']\\'\\n\\n \\'code\\' cell: \\'[\\'from langchain.document_loaders import NotebookLoader\\']\\'\\n\\n \\'code\\' cell: \\'[\\'loader = NotebookLoader(\"example_data/notebook.ipynb\")\\']\\'\\n\\n \\'markdown\\' cell: \\'[\\'`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\\', \\'\\', \\'**Parameters**:\\', \\'\\', \\'* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\\', \\'* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\\', \\'* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\\', \\'* `traceback` (bool): whether to include full traceback (default is False).\\']\\'\\n\\n \\'code\\' cell: \\'[\\'loader.load(include_outputs=True, max_output_length=20, remove_newline=True)\\']\\'\\n\\n', lookup_str='', metadata={'source': 'example_data/notebook.ipynb'}, lookup_index=0)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader.load(include_outputs=True, max_output_length=20, remove_newline=True)"
|
||||
]
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@ -69,9 +85,8 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.1"
|
||||
"version": "3.9.1"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "981b6680a42bdb5eb22187741e1607b3aae2cf73db800d1af1f268d1de6a1f70"
|
||||
|
@ -61,16 +61,23 @@ def remove_newlines(x: Any) -> Any:
|
||||
class NotebookLoader(BaseLoader):
|
||||
"""Loader that loads .ipynb notebook files."""
|
||||
|
||||
def __init__(self, path: str):
|
||||
"""Initialize with path."""
|
||||
self.file_path = path
|
||||
|
||||
def load(
|
||||
def __init__(
|
||||
self,
|
||||
path: str,
|
||||
include_outputs: bool = False,
|
||||
max_output_length: int = 10,
|
||||
remove_newline: bool = False,
|
||||
traceback: bool = False,
|
||||
):
|
||||
"""Initialize with path."""
|
||||
self.file_path = path
|
||||
self.include_outputs = include_outputs
|
||||
self.max_output_length = max_output_length
|
||||
self.remove_newline = remove_newline
|
||||
self.traceback = traceback
|
||||
|
||||
def load(
|
||||
self,
|
||||
) -> List[Document]:
|
||||
"""Load documents."""
|
||||
try:
|
||||
@ -87,12 +94,12 @@ class NotebookLoader(BaseLoader):
|
||||
|
||||
data = pd.json_normalize(d["cells"])
|
||||
filtered_data = data[["cell_type", "source", "outputs"]]
|
||||
if remove_newline:
|
||||
if self.remove_newline:
|
||||
filtered_data = filtered_data.applymap(remove_newlines)
|
||||
|
||||
text = filtered_data.apply(
|
||||
lambda x: concatenate_cells(
|
||||
x, include_outputs, max_output_length, traceback
|
||||
x, self.include_outputs, self.max_output_length, self.traceback
|
||||
),
|
||||
axis=1,
|
||||
).str.cat(sep=" ")
|
||||
|
@ -18,7 +18,7 @@ class Anthropic(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
import anthropic
|
||||
from langchain import Anthropic
|
||||
from langchain.llms import Anthropic
|
||||
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
|
||||
|
||||
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
|
||||
|
@ -22,8 +22,8 @@ class Banana(LLM, BaseModel):
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain import Banana
|
||||
cerebrium = Banana(model_key="")
|
||||
from langchain.llms import Banana
|
||||
banana = Banana(model_key="")
|
||||
"""
|
||||
|
||||
model_key: str = ""
|
||||
|
@ -22,7 +22,7 @@ class CerebriumAI(LLM, BaseModel):
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain import CerebriumAI
|
||||
from langchain.llms import CerebriumAI
|
||||
cerebrium = CerebriumAI(endpoint_url="")
|
||||
|
||||
"""
|
||||
|
@ -21,7 +21,7 @@ class Cohere(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import Cohere
|
||||
from langchain.llms import Cohere
|
||||
cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key")
|
||||
"""
|
||||
|
||||
|
@ -23,7 +23,7 @@ class DeepInfra(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import DeepInfra
|
||||
from langchain.llms import DeepInfra
|
||||
di = DeepInfra(model_id="google/flan-t5-xl",
|
||||
deepinfra_api_token="my-api-key")
|
||||
"""
|
||||
|
@ -18,7 +18,7 @@ class ForefrontAI(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import ForefrontAI
|
||||
from langchain.llms import ForefrontAI
|
||||
forefrontai = ForefrontAI(endpoint_url="")
|
||||
"""
|
||||
|
||||
|
@ -21,7 +21,7 @@ class GooseAI(LLM, BaseModel):
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain import GooseAI
|
||||
from langchain.llms import GooseAI
|
||||
gooseai = GooseAI(model_name="gpt-neo-20b")
|
||||
|
||||
"""
|
||||
|
@ -23,7 +23,7 @@ class HuggingFaceHub(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import HuggingFaceHub
|
||||
from langchain.llms import HuggingFaceHub
|
||||
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
|
||||
"""
|
||||
|
||||
|
@ -25,14 +25,14 @@ class HuggingFacePipeline(LLM, BaseModel):
|
||||
Example using from_model_id:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.llms import HuggingFacePipeline
|
||||
hf = HuggingFacePipeline.from_model_id(
|
||||
model_id="gpt2", task="text-generation"
|
||||
)
|
||||
Example passing pipeline in directly:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.llms import HuggingFacePipeline
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
|
||||
model_id = "gpt2"
|
||||
|
@ -21,7 +21,7 @@ class Modal(LLM, BaseModel):
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain import Modal
|
||||
from langchain.llms import Modal
|
||||
modal = Modal(endpoint_url="")
|
||||
|
||||
"""
|
||||
|
@ -16,7 +16,7 @@ class NLPCloud(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import NLPCloud
|
||||
from langchain.llms import NLPCloud
|
||||
nlpcloud = NLPCloud(model="gpt-neox-20b")
|
||||
"""
|
||||
|
||||
|
@ -75,7 +75,7 @@ class BaseOpenAI(BaseLLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import OpenAI
|
||||
from langchain.llms import OpenAI
|
||||
openai = OpenAI(model_name="text-davinci-003")
|
||||
"""
|
||||
|
||||
|
@ -22,7 +22,7 @@ class Petals(LLM, BaseModel):
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain import petals
|
||||
from langchain.llms import petals
|
||||
petals = Petals()
|
||||
|
||||
"""
|
||||
|
@ -23,7 +23,7 @@ class PromptLayerOpenAI(OpenAI, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import OpenAI
|
||||
from langchain.llms import OpenAI
|
||||
openai = OpenAI(model_name="text-davinci-003")
|
||||
"""
|
||||
|
||||
|
@ -22,8 +22,8 @@ class StochasticAI(LLM, BaseModel):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import StochasticAI
|
||||
forefrontai = StochasticAI(api_url="")
|
||||
from langchain.llms import StochasticAI
|
||||
stochasticai = StochasticAI(api_url="")
|
||||
"""
|
||||
|
||||
api_url: str = ""
|
||||
|
Loading…
Reference in New Issue
Block a user