langchain/libs/partners/mistralai/docs/embeddings.ipynb

104 lines
2.1 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "b14a24db",
"metadata": {},
"source": [
"# MistralAIEmbeddings\n",
"\n",
"This notebook explains how to use MistralAIEmbeddings, which is included in the langchain_mistralai package, to embed texts in langchain."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0ab948fc",
"metadata": {},
"outputs": [],
"source": [
"# pip install -U langchain-mistralai"
]
},
{
"cell_type": "markdown",
"id": "67c637ca",
"metadata": {},
"source": [
"## import the library"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5709b030",
"metadata": {},
"outputs": [],
"source": [
"from langchain_mistralai import MistralAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1756b1ba",
"metadata": {},
"outputs": [],
"source": [
"embedding = MistralAIEmbeddings(mistral_api_key='your-api-key')"
]
},
{
"cell_type": "markdown",
"id": "4a2a098d",
"metadata": {},
"source": [
"# Using the Embedding Model\n",
"With `MistralAIEmbeddings`, you can directly use the default model 'mistral-embed', or set a different one if available."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "584b9af5",
"metadata": {},
"outputs": [],
"source": [
"embedding.model = 'mistral-embed' # or your preferred model if available"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "be18b873",
"metadata": {},
"outputs": [],
"source": [
"res_query = embedding.embed_query(\"The test information\")\n",
"res_document = embedding.embed_documents([\"test1\", \"another test\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}