{ "cells": [ { "cell_type": "markdown", "id": "b14a24db", "metadata": {}, "source": [ "# MistralAIEmbeddings\n", "\n", "This notebook explains how to use MistralAIEmbeddings, which is included in the langchain_mistralai package, to embed texts in langchain." ] }, { "cell_type": "code", "execution_count": 1, "id": "0ab948fc", "metadata": {}, "outputs": [], "source": [ "# pip install -U langchain-mistralai" ] }, { "cell_type": "markdown", "id": "67c637ca", "metadata": {}, "source": [ "## import the library" ] }, { "cell_type": "code", "execution_count": 2, "id": "5709b030", "metadata": {}, "outputs": [], "source": [ "from langchain_mistralai import MistralAIEmbeddings" ] }, { "cell_type": "code", "execution_count": 3, "id": "1756b1ba", "metadata": {}, "outputs": [], "source": [ "embedding = MistralAIEmbeddings(mistral_api_key='your-api-key')" ] }, { "cell_type": "markdown", "id": "4a2a098d", "metadata": {}, "source": [ "# Using the Embedding Model\n", "With `MistralAIEmbeddings`, you can directly use the default model 'mistral-embed', or set a different one if available." ] }, { "cell_type": "code", "execution_count": 4, "id": "584b9af5", "metadata": {}, "outputs": [], "source": [ "embedding.model = 'mistral-embed' # or your preferred model if available" ] }, { "cell_type": "code", "execution_count": 5, "id": "be18b873", "metadata": {}, "outputs": [], "source": [ "res_query = embedding.embed_query(\"The test information\")\n", "res_document = embedding.embed_documents([\"test1\", \"another test\"])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }