mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
b9c00dd8de
add tile example in readme
7.9 KiB
7.9 KiB
ImaginAIry 🤖🧠
AI imagined images. Pythonic generation of stable diffusion images.
"just works" on Linux and OSX(M1).
Examples
Multiple Prompts
>> pip install imaginairy
>> imagine "a scenic landscape" "a photo of a dog" "photo of a fruit bowl" "portrait photo of a freckled woman"
🤖🧠 received 4 prompt(s) and will repeat them 1 times to create 4 images.
Loading model onto mps backend...
Generating 🖼 : "a scenic landscape" 512x512px seed:557988237 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.36it/s]
🖼 saved to: ./outputs/000001_557988237_PLMS40_PS7.5_a_scenic_landscape.jpg
Generating 🖼 : "a photo of a dog" 512x512px seed:277230171 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.41it/s]
🖼 saved to: ./outputs/000002_277230171_PLMS40_PS7.5_a_photo_of_a_dog.jpg
Generating 🖼 : "photo of a fruit bowl" 512x512px seed:639753980 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.40it/s]
🖼 saved to: ./outputs/000003_639753980_PLMS40_PS7.5_photo_of_a_fruit_bowl.jpg
Generating 🖼 : "portrait photo of a freckled woman" 512x512px seed:500686645 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.37it/s]
🖼 saved to: ./outputs/000004_500686645_PLMS40_PS7.5_portrait_photo_of_a_freckled_woman.jpg
Tiled Images
>> imagine "Art Nouveau mosaic" --tile
🤖🧠 received 1 prompt(s) and will repeat them 1 times to create 1 images.
Loading model onto mps backend...
Generating 🖼 : "Art Nouveau mosaic" 512x512px seed:658241102 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:31<00:00, 1.28it/s]
🖼 saved to: ./outputs/000058_658241102_PLMS40_PS7.5_Art_Nouveau_mosaic.jpg
Features
- It makes images from text descriptions! 🎉
- Generate images either in code or from command line.
- It just works. Proper requirements installed, model weights automatically downloaded. No huggingface account needed. (if you have the right hardware... and aren't on windows)
- Noisy logs are gone (which was surprisingly hard to accomplish)
- WeightedPrompts let you smash together separate prompts (cat-dog)
- Tile Mode creates tileable images
- Prompt metadata saved into image file metadata
How To
from imaginairy import imagine_images, imagine_image_files, ImaginePrompt, WeightedPrompt
prompts = [
ImaginePrompt("a scenic landscape", seed=1),
ImaginePrompt("a bowl of fruit"),
ImaginePrompt([
WeightedPrompt("cat", weight=1),
WeightedPrompt("dog", weight=1),
])
]
for result in imagine_images(prompts):
# do something
result.save("my_image.jpg")
# or
imagine_image_files(prompts, outdir="./my-art")
Requirements
- Computer with CUDA supported graphics card. ~10 gb video ram OR
- Apple M1 computer
Improvements from CompVis
- img2img actually does # of steps you specify
- performance optimizations
Models Used
- CLIP - https://openai.com/blog/clip/
- LDM - Latent Diffusion
- Stable Diffusion
Todo
- performance optimizations
- https://github.com/huggingface/diffusers/blob/main/docs/source/optimization/fp16.mdx
- https://github.com/neonsecret/stable-diffusion
- ✅ https://github.com/CompVis/stable-diffusion/compare/main...Doggettx:stable-diffusion:autocast-improvements#
- ✅ https://www.reddit.com/r/StableDiffusion/comments/xalaws/test_update_for_less_memory_usage_and_higher/
- deploy to pypi
- add tests
- set up ci (test/lint/format)
- add docs
- notify https://github.com/CompVis/stable-diffusion/issues/25
- remove yaml config
- delete more unused code
- Interface improvements
- init-image at command line
- prompt expansion?
- webserver interface (low priority, this is a library)
- Image Generation Features
- upscaling
- face improvements
- codeformer
- image describe feature - https://replicate.com/methexis-inc/img2prompt
- outpainting
- inpainting
- add more sampling methods?
- img2img but keeps img stable
- img2img for plms?
- images as actual prompts instead of just init images
- cross-attention control:
- guided generation https://colab.research.google.com/drive/1dlgggNa5Mz8sEAGU0wFCHhGLFooW_pf1#scrollTo=UDeXQKbPTdZI
- tiling
- output show-work videos
- image variations https://github.com/lstein/stable-diffusion/blob/main/VARIATIONS.md
- textual inversion
- zooming videos? a la disco diffusion
- fix saturation at high CFG https://www.reddit.com/r/StableDiffusion/comments/xalo78/fixing_excessive_contrastsaturation_resulting/