- provides more informative logs - provides a detailed safety score object - adds non-bypassable filter for extreme content
24 KiB
ImaginAIry 🤖🧠
AI imagined images. Pythonic generation of stable diffusion images.
"just works" on Linux and macOS(M1) (and maybe windows?).
Examples
# on macOS, make sure rust is installed first
>> pip install imaginairy
>> imagine "a scenic landscape" "a photo of a dog" "photo of a fruit bowl" "portrait photo of a freckled woman"
Console Output
🤖🧠 received 4 prompt(s) and will repeat them 1 times to create 4 images.
Loading model onto mps backend...
Generating 🖼 : "a scenic landscape" 512x512px seed:557988237 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.36it/s]
🖼 saved to: ./outputs/000001_557988237_PLMS40_PS7.5_a_scenic_landscape.jpg
Generating 🖼 : "a photo of a dog" 512x512px seed:277230171 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.41it/s]
🖼 saved to: ./outputs/000002_277230171_PLMS40_PS7.5_a_photo_of_a_dog.jpg
Generating 🖼 : "photo of a fruit bowl" 512x512px seed:639753980 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:28<00:00, 1.40it/s]
🖼 saved to: ./outputs/000003_639753980_PLMS40_PS7.5_photo_of_a_fruit_bowl.jpg
Generating 🖼 : "portrait photo of a freckled woman" 512x512px seed:500686645 prompt-strength:7.5 steps:40 sampler-type:PLMS
PLMS Sampler: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:29<00:00, 1.37it/s]
🖼 saved to: ./outputs/000004_500686645_PLMS40_PS7.5_portrait_photo_of_a_freckled_woman.jpg
Prompt Based Editing by clipseg
Specify advanced text based masks using boolean logic and strength modifiers. Mask descriptions must be lowercase. Keywords uppercase.
Valid symbols: AND
, OR
, NOT
, ()
, and mask strength modifier {*1.5}
where +
can be any of + - * /
. Single-character boolean
operators also work. When writing strength modifies know that pixel values are between 0 and 1.
>> imagine \
--init-image pearl_earring.jpg \
--mask-prompt "face AND NOT (bandana OR hair OR blue fabric){*6}" \
--mask-mode keep \
--init-image-strength .2 \
--fix-faces \
"a modern female president" "a female robot" "a female doctor" "a female firefighter"
>> imagine \
--init-image fruit-bowl.jpg \
--mask-prompt "fruit OR fruit stem{*1.5}" \
--mask-mode replace \
--mask-modify-original \
--init-image-strength .1 \
"a bowl of kittens" "a bowl of gold coins" "a bowl of popcorn" "a bowl of spaghetti"
➡️
Face Enhancement by CodeFormer
>> imagine "a couple smiling" --steps 40 --seed 1 --fix-faces
➡️
Upscaling by RealESRGAN
>> imagine "colorful smoke" --steps 40 --upscale
➡️
Tiled Images
>> imagine "gold coins" "a lush forest" "piles of old books" leaves --tile
Image-to-Image
>> imagine "portrait of a smiling lady. oil painting" --init-image girl_with_a_pearl_earring.jpg
➡️
Prompt Expansion
You can use {}
to randomly pull values from lists. A list of values separated by |
and enclosed in { }
will be randomly drawn from in a non-repeating fashion. Values that are surrounded by _ _
will
pull from a phrase list of the same name. Folders containing .txt phraselist files may be specified via
--prompt_library_path
. The option may be specified multiple times. Built-in categories:
3d-term, adj-architecture, adj-beauty, adj-detailed, adj-emotion, adj-general, adj-horror, animal, art-movement,
art-site, artist, artist-botanical, artist-surreal, aspect-ratio, bird, body-of-water, body-pose, camera-brand,
camera-model, color, cosmic-galaxy, cosmic-nebula, cosmic-star, cosmic-term, dinosaur, eyecolor, f-stop,
fantasy-creature, fantasy-setting, fish, flower, focal-length, food, fruit, games, gen-modifier, hair, hd,
iso-stop, landscape-type, national-park, nationality, neg-weight, noun-beauty, noun-fantasy, noun-general,
noun-horror, occupation, photo-term, pop-culture, pop-location, punk-style, quantity, rpg-item, scenario-desc,
skin-color, spaceship, style, tree-species, trippy, world-heritage-site
Examples:
imagine "a {lime|blue|silver|aqua} colored dog" -r 4 --seed 0
(note that it generates a dog of each color without repetition)
imagine "a {_color_} dog" -r 4 --seed 0
will generate four, different colored dogs. The colors will be pulled from an included
phraselist of colors.
imagine "a {_spaceship_|_fruit_|hot air balloon}. low-poly" -r 4 --seed 0
will generate images of spaceships or fruits or a hot air balloon
Credit to noodle-soup-prompts where most, but not all, of the wordlists originate.
Generate image captions (via BLIP)
>> aimg describe assets/mask_examples/bowl001.jpg
a bowl full of gold bars sitting on a table
Features
- It makes images from text descriptions! 🎉
- Generate images either in code or from command line.
- It just works. Proper requirements are installed. model weights are automatically downloaded. No huggingface account needed. (if you have the right hardware... and aren't on windows)
- No more distorted faces!
- Noisy logs are gone (which was surprisingly hard to accomplish)
- WeightedPrompts let you smash together separate prompts (cat-dog)
- Tile Mode creates tileable images
- Prompt metadata saved into image file metadata
- Edit images by describing the part you want edited (see example above)
- Have AI generate captions for images
aimg describe <filename-or-url>
- Interactive prompt: just run
aimg
How To
For full command line instructions run aimg --help
from imaginairy import imagine, imagine_image_files, ImaginePrompt, WeightedPrompt, LazyLoadingImage
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Thomas_Cole_-_Architect%E2%80%99s_Dream_-_Google_Art_Project.jpg/540px-Thomas_Cole_-_Architect%E2%80%99s_Dream_-_Google_Art_Project.jpg"
prompts = [
ImaginePrompt("a scenic landscape", seed=1, upscale=True),
ImaginePrompt("a bowl of fruit"),
ImaginePrompt([
WeightedPrompt("cat", weight=1),
WeightedPrompt("dog", weight=1),
]),
ImaginePrompt(
"a spacious building",
init_image=LazyLoadingImage(url=url)
),
ImaginePrompt(
"a bowl of strawberries",
init_image=LazyLoadingImage(filepath="mypath/to/bowl_of_fruit.jpg"),
mask_prompt="fruit OR stem{*2}", # amplify the stem mask x2
mask_mode="replace",
mask_modify_original=True,
),
ImaginePrompt("strawberries", tile_mode=True),
]
for result in imagine(prompts):
# do something
result.save("my_image.jpg")
# or
imagine_image_files(prompts, outdir="./my-art")
Requirements
- ~10 gb space for models to download
- A decent computer with either a CUDA supported graphics card or M1 processor.
- Python installed. Preferably Python 3.10.
- For macOS rust and setuptools-rust must be installed to compile the
tokenizer
library. They can be installed via:curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
andpip install setuptools-rust
Running in Docker
See example Dockerfile (works on machine where you can pass the gpu into the container)
docker build . -t imaginairy
# you really want to map the cache or you end up wasting a lot of time and space redownloading the model weights
docker run -it --gpus all -v $HOME/.cache/huggingface:/root/.cache/huggingface -v $HOME/.cache/torch:/root/.cache/torch -v `pwd`/outputs:/outputs imaginairy /bin/bash
Running on Google Colab
ChangeLog
3.0.0
- feature: improved safety filter
2.4.0
- 🎉 feature: prompt expansion
- feature: make (blip) photo captions more descriptive
2.3.1
- fix: face fidelity default was broken
2.3.0
- feature: model weights file can be specified via
--model-weights-path
argument at the command line - fix: set face fidelity default back to old value
- fix: handle small images without throwing exception. credit to @NiclasEriksen
- docs: add setuptools-rust as dependency for macos
2.2.1
- fix: init image is fully ignored if init-image-strength = 0
2.2.0
- feature: face enhancement fidelity is now configurable
2.1.0
2.0.3
- fix memory leak in face enhancer
- fix blurry inpainting
- fix for pillow compatibility
2.0.0
- 🎉 fix: inpainted areas correlate with surrounding image, even at 100% generation strength. Previously if the generation strength was high enough the generated image would be uncorrelated to the rest of the surrounding image. It created terrible looking images.
- 🎉 feature: interactive prompt added. access by running
aimg
- 🎉 feature: Specify advanced text based masks using boolean logic and strength modifiers. Mask descriptions must be lowercase. Keywords uppercase.
Valid symbols:
AND
,OR
,NOT
,()
, and mask strength modifier{+0.1}
where+
can be any of+ - * /
. Single character boolean operators also work (|
,&
,!
) - 🎉 feature: apply mask edits to original files with
mask_modify_original
(on by default) - feature: auto-rotate images if exif data specifies to do so
- fix: mask boundaries are more accurate
- fix: accept mask images in command line
- fix: img2img algorithm was wrong and wouldn't at values close to 0 or 1
1.6.2
- fix: another bfloat16 fix
1.6.1
- fix: make sure image tensors come to the CPU as float32 so there aren't compatability issues with non-bfloat16 cpus
1.6.0
- fix: maybe address #13 with
expected scalar type BFloat16 but found Float
- at minimum one can specify
--precision full
now and that will probably fix the issue
- at minimum one can specify
- feature: tile mode can now be specified per-prompt
1.5.3
- fix: missing config file for describe feature
1.5.1
- img2img now supported with PLMS (instead of just DDIM)
- added image captioning feature
aimg describe dog.jpg
=>a brown dog sitting on grass
- added new commandline tool
aimg
for additional image manipulation functionality
1.4.0
- support multiple additive targets for masking with
|
symbol. Example: "fruit|stem|fruit stem"
1.3.0
- added prompt based image editing. Example: "fruit => gold coins"
- test coverage improved
1.2.0
- allow urls as init-images
previous
- img2img actually does # of steps you specify
- performance optimizations
- numerous other changes
Not Supported
- a GUI. this is a python library
- training
- exploratory features that don't work well
Todo
- Performance Optimizations
- ✅ https://github.com/huggingface/diffusers/blob/main/docs/source/optimization/fp16.mdx
- ✅ https://github.com/CompVis/stable-diffusion/compare/main...Doggettx:stable-diffusion:autocast-improvements#
- ✅ https://www.reddit.com/r/StableDiffusion/comments/xalaws/test_update_for_less_memory_usage_and_higher/
- https://github.com/neonsecret/stable-diffusion
- https://github.com/CompVis/stable-diffusion/pull/177
- https://github.com/huggingface/diffusers/pull/532/files
- https://github.com/HazyResearch/flash-attention
- xformers improvments https://www.photoroom.com/tech/stable-diffusion-100-percent-faster-with-memory-efficient-attention/
- Development Environment
- ✅ add tests
- ✅ set up ci (test/lint/format)
- setup parallel testing
- add docs
- remove yaml config
- delete more unused code
- Interface improvements
- ✅ init-image at command line
- ✅ prompt expansion
- ✅ interactive cli
- Image Generation Features
- ✅ add k-diffusion sampling methods
- ✅ tiling
- generation videos/gifs
- Compositional Visual Generation
- negative prompting
- some syntax to allow it in a text string
- images as actual prompts instead of just init images
- requires model fine-tuning since SD1.4 expects 77x768 text encoding input
- https://twitter.com/Buntworthy/status/1566744186153484288
- https://github.com/justinpinkney/stable-diffusion
- https://github.com/LambdaLabsML/lambda-diffusers
- https://www.reddit.com/r/MachineLearning/comments/x6k5bm/n_stable_diffusion_image_variations_released/
- Image Editing
- outpainting
- ✅ inpainting
- https://github.com/Jack000/glid-3-xl-stable
- https://github.com/andreas128/RePaint
- img2img but keeps img stable
- https://www.reddit.com/r/StableDiffusion/comments/xboy90/a_better_way_of_doing_img2img_by_finding_the/
- https://gist.github.com/trygvebw/c71334dd127d537a15e9d59790f7f5e1
bbb5298146
- https://github.com/SHI-Labs/FcF-Inpainting https://praeclarumjj3.github.io/fcf-inpainting/
- ✅ text based image masking
- Image Enhancement
- Photo Restoration - https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life
- Upscaling
- ✅ realesrgan
- ldm
- https://github.com/lowfuel/progrock-stable
- gobig
- stable super-res?
- todo: try with 1-0-0-0 mask at full image resolution (rencoding entire image+predicted image at every step)
- todo: use a gaussian pyramid and only include the "high-detail" level of the pyramid into the next step
- https://www.reddit.com/r/StableDiffusion/comments/xkjjf9/upscale_to_huge_sizes_and_add_detail_with_sd/
- ✅ face enhancers
- ✅ gfpgan - https://github.com/TencentARC/GFPGAN
- ✅ codeformer - https://github.com/sczhou/CodeFormer
- ✅ image describe feature -
- ✅ https://github.com/salesforce/BLIP
- 🚫 CLIP brute-force prompt reconstruction
- The accuracy of this approach is too low for me to include it in imaginAIry
- https://github.com/rmokady/CLIP_prefix_caption
- https://github.com/pharmapsychotic/clip-interrogator (blip + clip)
- https://github.com/KaiyangZhou/CoOp
- 🚫 CPU support. While the code does actually work on some CPUs, the generation takes so long that I don't think it's worth the effort to support this feature
- ✅ img2img for plms
- img2img for kdiff functions
- Other
- Enhancement pipelines
- text-to-3d https://dreamfusionpaper.github.io/
- make a video https://github.com/lucidrains/make-a-video-pytorch
- animations
- cross-attention control:
- guided generation
- image variations https://github.com/lstein/stable-diffusion/blob/main/VARIATIONS.md
- textual inversion
- https://www.reddit.com/r/StableDiffusion/comments/xbwb5y/how_to_run_textual_inversion_locally_train_your/
- https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb#scrollTo=50JuJUM8EG1h
- https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion_textual_inversion_library_navigator.ipynb
- https://github.com/Jack000/glid-3-xl-stable
- fix saturation at high CFG https://www.reddit.com/r/StableDiffusion/comments/xalo78/fixing_excessive_contrastsaturation_resulting/
- https://www.reddit.com/r/StableDiffusion/comments/xbrrgt/a_rundown_of_twenty_new_methodsoptions_added_to/
- ✅ deploy to pypi
- find similar images https://knn5.laion.ai/?back=https%3A%2F%2Fknn5.laion.ai%2F&index=laion5B&useMclip=false
Noteable Stable Diffusion Implementations
- https://github.com/ahrm/UnstableFusion
- https://github.com/AUTOMATIC1111/stable-diffusion-webui
- https://github.com/blueturtleai/gimp-stable-diffusion
- https://github.com/hafriedlander/stable-diffusion-grpcserver
- https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion
- https://github.com/lkwq007/stablediffusion-infinity
- https://github.com/lstein/stable-diffusion
- https://github.com/parlance-zz/g-diffuser-lib