mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-19 03:25:41 +00:00
14a06e160d
it's not on pypi https://github.com/openai/CLIP/issues/141
151 lines
4.7 KiB
Python
151 lines
4.7 KiB
Python
import gzip
|
|
import html
|
|
import os
|
|
from functools import lru_cache
|
|
|
|
import ftfy
|
|
import regex as re
|
|
|
|
|
|
@lru_cache()
|
|
def default_bpe():
|
|
return os.path.join(
|
|
os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz"
|
|
)
|
|
|
|
|
|
@lru_cache()
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = (
|
|
list(range(ord("!"), ord("~") + 1))
|
|
+ list(range(ord("¡"), ord("¬") + 1))
|
|
+ list(range(ord("®"), ord("ÿ") + 1))
|
|
)
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8 + n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
def get_pairs(word):
|
|
"""Return set of symbol pairs in a word.
|
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|
"""
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
return pairs
|
|
|
|
|
|
def basic_clean(text):
|
|
text = ftfy.fix_text(text)
|
|
text = html.unescape(html.unescape(text))
|
|
return text.strip()
|
|
|
|
|
|
def whitespace_clean(text):
|
|
text = re.sub(r"\s+", " ", text)
|
|
text = text.strip()
|
|
return text
|
|
|
|
|
|
class SimpleTokenizer(object):
|
|
def __init__(self, bpe_path: str = default_bpe()):
|
|
self.byte_encoder = bytes_to_unicode()
|
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
|
|
merges = merges[1 : 49152 - 256 - 2 + 1]
|
|
merges = [tuple(merge.split()) for merge in merges]
|
|
vocab = list(bytes_to_unicode().values())
|
|
vocab = vocab + [v + "</w>" for v in vocab]
|
|
for merge in merges:
|
|
vocab.append("".join(merge))
|
|
vocab.extend(["<|startoftext|>", "<|endoftext|>"])
|
|
self.encoder = dict(zip(vocab, range(len(vocab))))
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
self.cache = {
|
|
"<|startoftext|>": "<|startoftext|>",
|
|
"<|endoftext|>": "<|endoftext|>",
|
|
}
|
|
self.pat = re.compile(
|
|
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
|
re.IGNORECASE,
|
|
)
|
|
|
|
def bpe(self, token):
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token + "</w>"
|
|
|
|
while True:
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
except:
|
|
new_word.extend(word[i:])
|
|
break
|
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
new_word.append(first + second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = " ".join(word)
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def encode(self, text):
|
|
bpe_tokens = []
|
|
text = whitespace_clean(basic_clean(text)).lower()
|
|
for token in re.findall(self.pat, text):
|
|
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
|
bpe_tokens.extend(
|
|
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
|
|
)
|
|
return bpe_tokens
|
|
|
|
def decode(self, tokens):
|
|
text = "".join([self.decoder[token] for token in tokens])
|
|
text = (
|
|
bytearray([self.byte_decoder[c] for c in text])
|
|
.decode("utf-8", errors="replace")
|
|
.replace("</w>", " ")
|
|
)
|
|
return text
|