mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
build: vendor clip
it's not on pypi https://github.com/openai/CLIP/issues/141
This commit is contained in:
parent
e478ccd3c9
commit
14a06e160d
12
Makefile
12
Makefile
@ -41,7 +41,7 @@ deploy: ## Deploy the package to pypi.org
|
||||
-git tag $$(python setup.py -V)
|
||||
git push --tags
|
||||
python setup.py bdist_wheel
|
||||
python setup.py sdist
|
||||
#python setup.py sdist
|
||||
@echo 'pypi.org Username: '
|
||||
@read username && twine upload dist/* -u $$username;
|
||||
rm -rf build
|
||||
@ -65,6 +65,16 @@ require_pyenv:
|
||||
echo -e "\033[0;32m ✔️ pyenv-virtualenv installed\033[0m";\
|
||||
fi
|
||||
|
||||
vendor_openai_clip:
|
||||
mkdir -p ./downloads
|
||||
-cd ./downloads && git clone git@github.com:openai/CLIP.git
|
||||
cd ./downloads/CLIP && git pull
|
||||
rm -rf ./imaginairy/vendored/clip
|
||||
cp -R ./downloads/CLIP/clip imaginairy/vendored/
|
||||
git --git-dir ./downloads/CLIP/.git rev-parse HEAD | tee ./imaginairy/vendored/clip/clip-commit-hash.txt
|
||||
echo "vendored from git@github.com:openai/CLIP.git" | tee ./imaginairy/vendored/clip/readme.txt
|
||||
|
||||
|
||||
help: ## Show this help message.
|
||||
@## https://gist.github.com/prwhite/8168133#gistcomment-1716694
|
||||
@echo -e "$$(grep -hE '^\S+:.*##' $(MAKEFILE_LIST) | sed -e 's/:.*##\s*/:/' -e 's/^\(.\+\):\(.*\)/\\x1b[36m\1\\x1b[m:\2/' | column -c2 -t -s :)" | sort
|
@ -1,4 +1,3 @@
|
||||
import clip
|
||||
import kornia
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -6,6 +5,7 @@ from einops import repeat
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from imaginairy.utils import get_device
|
||||
from imaginairy.vendored import clip
|
||||
|
||||
|
||||
class FrozenCLIPEmbedder(nn.Module):
|
||||
|
0
imaginairy/vendored/__init__.py
Normal file
0
imaginairy/vendored/__init__.py
Normal file
1
imaginairy/vendored/clip/__init__.py
Normal file
1
imaginairy/vendored/clip/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .clip import *
|
BIN
imaginairy/vendored/clip/bpe_simple_vocab_16e6.txt.gz
Normal file
BIN
imaginairy/vendored/clip/bpe_simple_vocab_16e6.txt.gz
Normal file
Binary file not shown.
1
imaginairy/vendored/clip/clip-commit-hash.txt
Normal file
1
imaginairy/vendored/clip/clip-commit-hash.txt
Normal file
@ -0,0 +1 @@
|
||||
d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
|
289
imaginairy/vendored/clip/clip.py
Normal file
289
imaginairy/vendored/clip/clip.py
Normal file
@ -0,0 +1,289 @@
|
||||
import hashlib
|
||||
import os
|
||||
import urllib
|
||||
import warnings
|
||||
from typing import Any, List, Union
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from pkg_resources import packaging
|
||||
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
||||
from tqdm import tqdm
|
||||
|
||||
from .model import build_model
|
||||
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
try:
|
||||
from torchvision.transforms import InterpolationMode
|
||||
|
||||
BICUBIC = InterpolationMode.BICUBIC
|
||||
except ImportError:
|
||||
BICUBIC = Image.BICUBIC
|
||||
|
||||
|
||||
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
||||
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
||||
|
||||
|
||||
__all__ = ["available_models", "load", "tokenize"]
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
_MODELS = {
|
||||
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
||||
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
||||
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
||||
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
||||
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
||||
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
||||
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
||||
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
||||
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
||||
}
|
||||
|
||||
|
||||
def _download(url: str, root: str):
|
||||
os.makedirs(root, exist_ok=True)
|
||||
filename = os.path.basename(url)
|
||||
|
||||
expected_sha256 = url.split("/")[-2]
|
||||
download_target = os.path.join(root, filename)
|
||||
|
||||
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
||||
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
||||
|
||||
if os.path.isfile(download_target):
|
||||
if (
|
||||
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
||||
== expected_sha256
|
||||
):
|
||||
return download_target
|
||||
else:
|
||||
warnings.warn(
|
||||
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
|
||||
)
|
||||
|
||||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
||||
with tqdm(
|
||||
total=int(source.info().get("Content-Length")),
|
||||
ncols=80,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1024,
|
||||
) as loop:
|
||||
while True:
|
||||
buffer = source.read(8192)
|
||||
if not buffer:
|
||||
break
|
||||
|
||||
output.write(buffer)
|
||||
loop.update(len(buffer))
|
||||
|
||||
if (
|
||||
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
||||
!= expected_sha256
|
||||
):
|
||||
raise RuntimeError(
|
||||
"Model has been downloaded but the SHA256 checksum does not not match"
|
||||
)
|
||||
|
||||
return download_target
|
||||
|
||||
|
||||
def _convert_image_to_rgb(image):
|
||||
return image.convert("RGB")
|
||||
|
||||
|
||||
def _transform(n_px):
|
||||
return Compose(
|
||||
[
|
||||
Resize(n_px, interpolation=BICUBIC),
|
||||
CenterCrop(n_px),
|
||||
_convert_image_to_rgb,
|
||||
ToTensor(),
|
||||
Normalize(
|
||||
(0.48145466, 0.4578275, 0.40821073),
|
||||
(0.26862954, 0.26130258, 0.27577711),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def available_models() -> List[str]:
|
||||
"""Returns the names of available CLIP models"""
|
||||
return list(_MODELS.keys())
|
||||
|
||||
|
||||
def load(
|
||||
name: str,
|
||||
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
|
||||
jit: bool = False,
|
||||
download_root: str = None,
|
||||
):
|
||||
"""Load a CLIP model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
||||
|
||||
device : Union[str, torch.device]
|
||||
The device to put the loaded model
|
||||
|
||||
jit : bool
|
||||
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
||||
|
||||
download_root: str
|
||||
path to download the model files; by default, it uses "~/.cache/clip"
|
||||
|
||||
Returns
|
||||
-------
|
||||
model : torch.nn.Module
|
||||
The CLIP model
|
||||
|
||||
preprocess : Callable[[PIL.Image], torch.Tensor]
|
||||
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
||||
"""
|
||||
if name in _MODELS:
|
||||
model_path = _download(
|
||||
_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")
|
||||
)
|
||||
elif os.path.isfile(name):
|
||||
model_path = name
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Model {name} not found; available models = {available_models()}"
|
||||
)
|
||||
|
||||
with open(model_path, "rb") as opened_file:
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(
|
||||
opened_file, map_location=device if jit else "cpu"
|
||||
).eval()
|
||||
state_dict = None
|
||||
except RuntimeError:
|
||||
# loading saved state dict
|
||||
if jit:
|
||||
warnings.warn(
|
||||
f"File {model_path} is not a JIT archive. Loading as a state dict instead"
|
||||
)
|
||||
jit = False
|
||||
state_dict = torch.load(opened_file, map_location="cpu")
|
||||
|
||||
if not jit:
|
||||
model = build_model(state_dict or model.state_dict()).to(device)
|
||||
if str(device) == "cpu":
|
||||
model.float()
|
||||
return model, _transform(model.visual.input_resolution)
|
||||
|
||||
# patch the device names
|
||||
device_holder = torch.jit.trace(
|
||||
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
|
||||
)
|
||||
device_node = [
|
||||
n
|
||||
for n in device_holder.graph.findAllNodes("prim::Constant")
|
||||
if "Device" in repr(n)
|
||||
][-1]
|
||||
|
||||
def patch_device(module):
|
||||
try:
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
except RuntimeError:
|
||||
graphs = []
|
||||
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("prim::Constant"):
|
||||
if "value" in node.attributeNames() and str(node["value"]).startswith(
|
||||
"cuda"
|
||||
):
|
||||
node.copyAttributes(device_node)
|
||||
|
||||
model.apply(patch_device)
|
||||
patch_device(model.encode_image)
|
||||
patch_device(model.encode_text)
|
||||
|
||||
# patch dtype to float32 on CPU
|
||||
if str(device) == "cpu":
|
||||
float_holder = torch.jit.trace(
|
||||
lambda: torch.ones([]).float(), example_inputs=[]
|
||||
)
|
||||
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
||||
float_node = float_input.node()
|
||||
|
||||
def patch_float(module):
|
||||
try:
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
except RuntimeError:
|
||||
graphs = []
|
||||
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("aten::to"):
|
||||
inputs = list(node.inputs())
|
||||
for i in [
|
||||
1,
|
||||
2,
|
||||
]: # dtype can be the second or third argument to aten::to()
|
||||
if inputs[i].node()["value"] == 5:
|
||||
inputs[i].node().copyAttributes(float_node)
|
||||
|
||||
model.apply(patch_float)
|
||||
patch_float(model.encode_image)
|
||||
patch_float(model.encode_text)
|
||||
|
||||
model.float()
|
||||
|
||||
return model, _transform(model.input_resolution.item())
|
||||
|
||||
|
||||
def tokenize(
|
||||
texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False
|
||||
) -> Union[torch.IntTensor, torch.LongTensor]:
|
||||
"""
|
||||
Returns the tokenized representation of given input string(s)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts : Union[str, List[str]]
|
||||
An input string or a list of input strings to tokenize
|
||||
|
||||
context_length : int
|
||||
The context length to use; all CLIP models use 77 as the context length
|
||||
|
||||
truncate: bool
|
||||
Whether to truncate the text in case its encoding is longer than the context length
|
||||
|
||||
Returns
|
||||
-------
|
||||
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
||||
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
||||
"""
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
||||
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
||||
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
||||
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||||
else:
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
||||
|
||||
for i, tokens in enumerate(all_tokens):
|
||||
if len(tokens) > context_length:
|
||||
if truncate:
|
||||
tokens = tokens[:context_length]
|
||||
tokens[-1] = eot_token
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Input {texts[i]} is too long for context length {context_length}"
|
||||
)
|
||||
result[i, : len(tokens)] = torch.tensor(tokens)
|
||||
|
||||
return result
|
548
imaginairy/vendored/clip/model.py
Normal file
548
imaginairy/vendored/clip/model.py
Normal file
@ -0,0 +1,548 @@
|
||||
from collections import OrderedDict
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1):
|
||||
super().__init__()
|
||||
|
||||
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu1 = nn.ReLU(inplace=True)
|
||||
|
||||
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.relu2 = nn.ReLU(inplace=True)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
||||
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu3 = nn.ReLU(inplace=True)
|
||||
|
||||
self.downsample = None
|
||||
self.stride = stride
|
||||
|
||||
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
||||
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
||||
self.downsample = nn.Sequential(
|
||||
OrderedDict(
|
||||
[
|
||||
("-1", nn.AvgPool2d(stride)),
|
||||
(
|
||||
"0",
|
||||
nn.Conv2d(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
stride=1,
|
||||
bias=False,
|
||||
),
|
||||
),
|
||||
("1", nn.BatchNorm2d(planes * self.expansion)),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
identity = x
|
||||
|
||||
out = self.relu1(self.bn1(self.conv1(x)))
|
||||
out = self.relu2(self.bn2(self.conv2(out)))
|
||||
out = self.avgpool(out)
|
||||
out = self.bn3(self.conv3(out))
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu3(out)
|
||||
return out
|
||||
|
||||
|
||||
class AttentionPool2d(nn.Module):
|
||||
def __init__(
|
||||
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(
|
||||
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
|
||||
)
|
||||
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
||||
self.num_heads = num_heads
|
||||
|
||||
def forward(self, x):
|
||||
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
||||
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
||||
x, _ = F.multi_head_attention_forward(
|
||||
query=x[:1],
|
||||
key=x,
|
||||
value=x,
|
||||
embed_dim_to_check=x.shape[-1],
|
||||
num_heads=self.num_heads,
|
||||
q_proj_weight=self.q_proj.weight,
|
||||
k_proj_weight=self.k_proj.weight,
|
||||
v_proj_weight=self.v_proj.weight,
|
||||
in_proj_weight=None,
|
||||
in_proj_bias=torch.cat(
|
||||
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
|
||||
),
|
||||
bias_k=None,
|
||||
bias_v=None,
|
||||
add_zero_attn=False,
|
||||
dropout_p=0,
|
||||
out_proj_weight=self.c_proj.weight,
|
||||
out_proj_bias=self.c_proj.bias,
|
||||
use_separate_proj_weight=True,
|
||||
training=self.training,
|
||||
need_weights=False,
|
||||
)
|
||||
return x.squeeze(0)
|
||||
|
||||
|
||||
class ModifiedResNet(nn.Module):
|
||||
"""
|
||||
A ResNet class that is similar to torchvision's but contains the following changes:
|
||||
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
||||
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
||||
- The final pooling layer is a QKV attention instead of an average pool
|
||||
"""
|
||||
|
||||
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
||||
super().__init__()
|
||||
self.output_dim = output_dim
|
||||
self.input_resolution = input_resolution
|
||||
|
||||
# the 3-layer stem
|
||||
self.conv1 = nn.Conv2d(
|
||||
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
|
||||
)
|
||||
self.bn1 = nn.BatchNorm2d(width // 2)
|
||||
self.relu1 = nn.ReLU(inplace=True)
|
||||
self.conv2 = nn.Conv2d(
|
||||
width // 2, width // 2, kernel_size=3, padding=1, bias=False
|
||||
)
|
||||
self.bn2 = nn.BatchNorm2d(width // 2)
|
||||
self.relu2 = nn.ReLU(inplace=True)
|
||||
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(width)
|
||||
self.relu3 = nn.ReLU(inplace=True)
|
||||
self.avgpool = nn.AvgPool2d(2)
|
||||
|
||||
# residual layers
|
||||
self._inplanes = width # this is a *mutable* variable used during construction
|
||||
self.layer1 = self._make_layer(width, layers[0])
|
||||
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
||||
|
||||
embed_dim = width * 32 # the ResNet feature dimension
|
||||
self.attnpool = AttentionPool2d(
|
||||
input_resolution // 32, embed_dim, heads, output_dim
|
||||
)
|
||||
|
||||
def _make_layer(self, planes, blocks, stride=1):
|
||||
layers = [Bottleneck(self._inplanes, planes, stride)]
|
||||
|
||||
self._inplanes = planes * Bottleneck.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(Bottleneck(self._inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
def stem(x):
|
||||
x = self.relu1(self.bn1(self.conv1(x)))
|
||||
x = self.relu2(self.bn2(self.conv2(x)))
|
||||
x = self.relu3(self.bn3(self.conv3(x)))
|
||||
x = self.avgpool(x)
|
||||
return x
|
||||
|
||||
x = x.type(self.conv1.weight.dtype)
|
||||
x = stem(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
x = self.attnpool(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
||||
super().__init__()
|
||||
|
||||
self.attn = nn.MultiheadAttention(d_model, n_head)
|
||||
self.ln_1 = LayerNorm(d_model)
|
||||
self.mlp = nn.Sequential(
|
||||
OrderedDict(
|
||||
[
|
||||
("c_fc", nn.Linear(d_model, d_model * 4)),
|
||||
("gelu", QuickGELU()),
|
||||
("c_proj", nn.Linear(d_model * 4, d_model)),
|
||||
]
|
||||
)
|
||||
)
|
||||
self.ln_2 = LayerNorm(d_model)
|
||||
self.attn_mask = attn_mask
|
||||
|
||||
def attention(self, x: torch.Tensor):
|
||||
self.attn_mask = (
|
||||
self.attn_mask.to(dtype=x.dtype, device=x.device)
|
||||
if self.attn_mask is not None
|
||||
else None
|
||||
)
|
||||
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x + self.attention(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.resblocks = nn.Sequential(
|
||||
*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return self.resblocks(x)
|
||||
|
||||
|
||||
class VisionTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_resolution: int,
|
||||
patch_size: int,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
output_dim: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.input_resolution = input_resolution
|
||||
self.output_dim = output_dim
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=3,
|
||||
out_channels=width,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
scale = width**-0.5
|
||||
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
||||
self.positional_embedding = nn.Parameter(
|
||||
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
|
||||
)
|
||||
self.ln_pre = LayerNorm(width)
|
||||
|
||||
self.transformer = Transformer(width, layers, heads)
|
||||
|
||||
self.ln_post = LayerNorm(width)
|
||||
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.conv1(x) # shape = [*, width, grid, grid]
|
||||
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
||||
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
||||
x = torch.cat(
|
||||
[
|
||||
self.class_embedding.to(x.dtype)
|
||||
+ torch.zeros(
|
||||
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
|
||||
),
|
||||
x,
|
||||
],
|
||||
dim=1,
|
||||
) # shape = [*, grid ** 2 + 1, width]
|
||||
x = x + self.positional_embedding.to(x.dtype)
|
||||
x = self.ln_pre(x)
|
||||
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
|
||||
x = self.ln_post(x[:, 0, :])
|
||||
|
||||
if self.proj is not None:
|
||||
x = x @ self.proj
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class CLIP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
# vision
|
||||
image_resolution: int,
|
||||
vision_layers: Union[Tuple[int, int, int, int], int],
|
||||
vision_width: int,
|
||||
vision_patch_size: int,
|
||||
# text
|
||||
context_length: int,
|
||||
vocab_size: int,
|
||||
transformer_width: int,
|
||||
transformer_heads: int,
|
||||
transformer_layers: int,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.context_length = context_length
|
||||
|
||||
if isinstance(vision_layers, (tuple, list)):
|
||||
vision_heads = vision_width * 32 // 64
|
||||
self.visual = ModifiedResNet(
|
||||
layers=vision_layers,
|
||||
output_dim=embed_dim,
|
||||
heads=vision_heads,
|
||||
input_resolution=image_resolution,
|
||||
width=vision_width,
|
||||
)
|
||||
else:
|
||||
vision_heads = vision_width // 64
|
||||
self.visual = VisionTransformer(
|
||||
input_resolution=image_resolution,
|
||||
patch_size=vision_patch_size,
|
||||
width=vision_width,
|
||||
layers=vision_layers,
|
||||
heads=vision_heads,
|
||||
output_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.transformer = Transformer(
|
||||
width=transformer_width,
|
||||
layers=transformer_layers,
|
||||
heads=transformer_heads,
|
||||
attn_mask=self.build_attention_mask(),
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
||||
self.positional_embedding = nn.Parameter(
|
||||
torch.empty(self.context_length, transformer_width)
|
||||
)
|
||||
self.ln_final = LayerNorm(transformer_width)
|
||||
|
||||
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
||||
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
||||
|
||||
self.initialize_parameters()
|
||||
|
||||
def initialize_parameters(self):
|
||||
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
||||
nn.init.normal_(self.positional_embedding, std=0.01)
|
||||
|
||||
if isinstance(self.visual, ModifiedResNet):
|
||||
if self.visual.attnpool is not None:
|
||||
std = self.visual.attnpool.c_proj.in_features**-0.5
|
||||
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
||||
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
||||
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
||||
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
||||
|
||||
for resnet_block in [
|
||||
self.visual.layer1,
|
||||
self.visual.layer2,
|
||||
self.visual.layer3,
|
||||
self.visual.layer4,
|
||||
]:
|
||||
for name, param in resnet_block.named_parameters():
|
||||
if name.endswith("bn3.weight"):
|
||||
nn.init.zeros_(param)
|
||||
|
||||
proj_std = (self.transformer.width**-0.5) * (
|
||||
(2 * self.transformer.layers) ** -0.5
|
||||
)
|
||||
attn_std = self.transformer.width**-0.5
|
||||
fc_std = (2 * self.transformer.width) ** -0.5
|
||||
for block in self.transformer.resblocks:
|
||||
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
||||
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
||||
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
||||
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
||||
|
||||
if self.text_projection is not None:
|
||||
nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5)
|
||||
|
||||
def build_attention_mask(self):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(self.context_length, self.context_length)
|
||||
mask.fill_(float("-inf"))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
return mask
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.visual.conv1.weight.dtype
|
||||
|
||||
def encode_image(self, image):
|
||||
return self.visual(image.type(self.dtype))
|
||||
|
||||
def encode_text(self, text):
|
||||
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
||||
|
||||
x = x + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, image, text):
|
||||
image_features = self.encode_image(image)
|
||||
text_features = self.encode_text(text)
|
||||
|
||||
# normalized features
|
||||
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
||||
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
||||
|
||||
# cosine similarity as logits
|
||||
logit_scale = self.logit_scale.exp()
|
||||
logits_per_image = logit_scale * image_features @ text_features.t()
|
||||
logits_per_text = logits_per_image.t()
|
||||
|
||||
# shape = [global_batch_size, global_batch_size]
|
||||
return logits_per_image, logits_per_text
|
||||
|
||||
|
||||
def convert_weights(model: nn.Module):
|
||||
"""Convert applicable model parameters to fp16"""
|
||||
|
||||
def _convert_weights_to_fp16(l):
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
||||
l.weight.data = l.weight.data.half()
|
||||
if l.bias is not None:
|
||||
l.bias.data = l.bias.data.half()
|
||||
|
||||
if isinstance(l, nn.MultiheadAttention):
|
||||
for attr in [
|
||||
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
||||
"in_proj_bias",
|
||||
"bias_k",
|
||||
"bias_v",
|
||||
]:
|
||||
tensor = getattr(l, attr)
|
||||
if tensor is not None:
|
||||
tensor.data = tensor.data.half()
|
||||
|
||||
for name in ["text_projection", "proj"]:
|
||||
if hasattr(l, name):
|
||||
attr = getattr(l, name)
|
||||
if attr is not None:
|
||||
attr.data = attr.data.half()
|
||||
|
||||
model.apply(_convert_weights_to_fp16)
|
||||
|
||||
|
||||
def build_model(state_dict: dict):
|
||||
vit = "visual.proj" in state_dict
|
||||
|
||||
if vit:
|
||||
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
||||
vision_layers = len(
|
||||
[
|
||||
k
|
||||
for k in state_dict.keys()
|
||||
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
||||
]
|
||||
)
|
||||
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
||||
grid_size = round(
|
||||
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
|
||||
)
|
||||
image_resolution = vision_patch_size * grid_size
|
||||
else:
|
||||
counts: list = [
|
||||
len(
|
||||
set(
|
||||
k.split(".")[2]
|
||||
for k in state_dict
|
||||
if k.startswith(f"visual.layer{b}")
|
||||
)
|
||||
)
|
||||
for b in [1, 2, 3, 4]
|
||||
]
|
||||
vision_layers = tuple(counts)
|
||||
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
||||
output_width = round(
|
||||
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
|
||||
)
|
||||
vision_patch_size = None
|
||||
assert (
|
||||
output_width**2 + 1
|
||||
== state_dict["visual.attnpool.positional_embedding"].shape[0]
|
||||
)
|
||||
image_resolution = output_width * 32
|
||||
|
||||
embed_dim = state_dict["text_projection"].shape[1]
|
||||
context_length = state_dict["positional_embedding"].shape[0]
|
||||
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
||||
transformer_width = state_dict["ln_final.weight"].shape[0]
|
||||
transformer_heads = transformer_width // 64
|
||||
transformer_layers = len(
|
||||
set(
|
||||
k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")
|
||||
)
|
||||
)
|
||||
|
||||
model = CLIP(
|
||||
embed_dim,
|
||||
image_resolution,
|
||||
vision_layers,
|
||||
vision_width,
|
||||
vision_patch_size,
|
||||
context_length,
|
||||
vocab_size,
|
||||
transformer_width,
|
||||
transformer_heads,
|
||||
transformer_layers,
|
||||
)
|
||||
|
||||
for key in ["input_resolution", "context_length", "vocab_size"]:
|
||||
if key in state_dict:
|
||||
del state_dict[key]
|
||||
|
||||
convert_weights(model)
|
||||
model.load_state_dict(state_dict)
|
||||
return model.eval()
|
1
imaginairy/vendored/clip/readme.txt
Normal file
1
imaginairy/vendored/clip/readme.txt
Normal file
@ -0,0 +1 @@
|
||||
vendored from git@github.com:openai/CLIP.git
|
150
imaginairy/vendored/clip/simple_tokenizer.py
Normal file
150
imaginairy/vendored/clip/simple_tokenizer.py
Normal file
@ -0,0 +1,150 @@
|
||||
import gzip
|
||||
import html
|
||||
import os
|
||||
from functools import lru_cache
|
||||
|
||||
import ftfy
|
||||
import regex as re
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def default_bpe():
|
||||
return os.path.join(
|
||||
os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz"
|
||||
)
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
def basic_clean(text):
|
||||
text = ftfy.fix_text(text)
|
||||
text = html.unescape(html.unescape(text))
|
||||
return text.strip()
|
||||
|
||||
|
||||
def whitespace_clean(text):
|
||||
text = re.sub(r"\s+", " ", text)
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
|
||||
class SimpleTokenizer(object):
|
||||
def __init__(self, bpe_path: str = default_bpe()):
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
|
||||
merges = merges[1 : 49152 - 256 - 2 + 1]
|
||||
merges = [tuple(merge.split()) for merge in merges]
|
||||
vocab = list(bytes_to_unicode().values())
|
||||
vocab = vocab + [v + "</w>" for v in vocab]
|
||||
for merge in merges:
|
||||
vocab.append("".join(merge))
|
||||
vocab.extend(["<|startoftext|>", "<|endoftext|>"])
|
||||
self.encoder = dict(zip(vocab, range(len(vocab))))
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {
|
||||
"<|startoftext|>": "<|startoftext|>",
|
||||
"<|endoftext|>": "<|endoftext|>",
|
||||
}
|
||||
self.pat = re.compile(
|
||||
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
||||
re.IGNORECASE,
|
||||
)
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token + "</w>"
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = " ".join(word)
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def encode(self, text):
|
||||
bpe_tokens = []
|
||||
text = whitespace_clean(basic_clean(text)).lower()
|
||||
for token in re.findall(self.pat, text):
|
||||
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
||||
bpe_tokens.extend(
|
||||
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
|
||||
)
|
||||
return bpe_tokens
|
||||
|
||||
def decode(self, tokens):
|
||||
text = "".join([self.decoder[token] for token in tokens])
|
||||
text = (
|
||||
bytearray([self.byte_decoder[c] for c in text])
|
||||
.decode("utf-8", errors="replace")
|
||||
.replace("</w>", " ")
|
||||
)
|
||||
return text
|
@ -6,8 +6,6 @@
|
||||
#
|
||||
absl-py==1.2.0
|
||||
# via tensorboard
|
||||
accelerate==0.12.0
|
||||
# via k-diffusion
|
||||
aiohttp==3.8.1
|
||||
# via fsspec
|
||||
aiosignal==1.2.0
|
||||
@ -21,43 +19,29 @@ async-timeout==4.0.2
|
||||
attrs==22.1.0
|
||||
# via
|
||||
# aiohttp
|
||||
# jsonschema
|
||||
# pytest
|
||||
black==22.8.0
|
||||
# via -r requirements-dev.in
|
||||
cachetools==5.2.0
|
||||
# via google-auth
|
||||
certifi==2022.6.15.1
|
||||
# via
|
||||
# requests
|
||||
# sentry-sdk
|
||||
chardet==4.0.0
|
||||
# via requests
|
||||
charset-normalizer==2.1.1
|
||||
# via aiohttp
|
||||
clean-fid==0.1.30
|
||||
# via k-diffusion
|
||||
# via
|
||||
# aiohttp
|
||||
# requests
|
||||
click==8.1.3
|
||||
# via
|
||||
# black
|
||||
# imaginairy (setup.py)
|
||||
# wandb
|
||||
clip @ git+https://github.com/openai/CLIP
|
||||
# via
|
||||
# imaginairy (setup.py)
|
||||
# k-diffusion
|
||||
# imaginAIry (setup.py)
|
||||
coverage==6.4.4
|
||||
# via -r requirements-dev.in
|
||||
diffusers==0.3.0
|
||||
# via imaginairy (setup.py)
|
||||
# via imaginAIry (setup.py)
|
||||
dill==0.3.5.1
|
||||
# via pylint
|
||||
docker-pycreds==0.4.0
|
||||
# via wandb
|
||||
einops==0.3.0
|
||||
# via
|
||||
# imaginairy (setup.py)
|
||||
# k-diffusion
|
||||
# via imaginAIry (setup.py)
|
||||
filelock==3.8.0
|
||||
# via
|
||||
# diffusers
|
||||
@ -69,14 +53,8 @@ frozenlist==1.3.1
|
||||
# aiosignal
|
||||
fsspec[http]==2022.8.2
|
||||
# via pytorch-lightning
|
||||
ftfy==6.1.1
|
||||
# via clip
|
||||
future==0.18.2
|
||||
# via pytorch-lightning
|
||||
gitdb==4.0.9
|
||||
# via gitpython
|
||||
gitpython==3.1.27
|
||||
# via wandb
|
||||
google-auth==2.11.0
|
||||
# via
|
||||
# google-auth-oauthlib
|
||||
@ -89,14 +67,12 @@ huggingface-hub==0.9.1
|
||||
# via
|
||||
# diffusers
|
||||
# transformers
|
||||
idna==2.10
|
||||
idna==3.3
|
||||
# via
|
||||
# requests
|
||||
# yarl
|
||||
imageio==2.9.0
|
||||
# via
|
||||
# imaginairy (setup.py)
|
||||
# scikit-image
|
||||
# via imaginAIry (setup.py)
|
||||
importlib-metadata==4.12.0
|
||||
# via diffusers
|
||||
iniconfig==1.1.1
|
||||
@ -105,16 +81,8 @@ isort==5.10.1
|
||||
# via
|
||||
# -r requirements-dev.in
|
||||
# pylint
|
||||
jsonmerge==1.8.0
|
||||
# via k-diffusion
|
||||
jsonschema==4.16.0
|
||||
# via jsonmerge
|
||||
k-diffusion @ git+https://github.com/crowsonkb/k-diffusion.git@71ba7d6735e9cba1945b429a21345960eb3f151c
|
||||
# via imaginairy (setup.py)
|
||||
kornia==0.6
|
||||
# via
|
||||
# imaginairy (setup.py)
|
||||
# k-diffusion
|
||||
# via imaginAIry (setup.py)
|
||||
lazy-object-proxy==1.7.1
|
||||
# via astroid
|
||||
markdown==3.4.1
|
||||
@ -131,49 +99,34 @@ multidict==6.0.2
|
||||
# yarl
|
||||
mypy-extensions==0.4.3
|
||||
# via black
|
||||
networkx==2.8.6
|
||||
# via scikit-image
|
||||
numpy==1.23.3
|
||||
# via
|
||||
# accelerate
|
||||
# clean-fid
|
||||
# diffusers
|
||||
# imageio
|
||||
# imaginairy (setup.py)
|
||||
# imaginAIry (setup.py)
|
||||
# pytorch-lightning
|
||||
# pywavelets
|
||||
# scikit-image
|
||||
# scipy
|
||||
# tensorboard
|
||||
# tifffile
|
||||
# torchmetrics
|
||||
# torchvision
|
||||
# transformers
|
||||
oauthlib==3.2.1
|
||||
# via requests-oauthlib
|
||||
omegaconf==2.1.1
|
||||
# via imaginairy (setup.py)
|
||||
# via imaginAIry (setup.py)
|
||||
packaging==21.3
|
||||
# via
|
||||
# accelerate
|
||||
# huggingface-hub
|
||||
# kornia
|
||||
# pytest
|
||||
# pytorch-lightning
|
||||
# scikit-image
|
||||
# torchmetrics
|
||||
# transformers
|
||||
pathspec==0.10.1
|
||||
# via black
|
||||
pathtools==0.1.2
|
||||
# via wandb
|
||||
pillow==9.2.0
|
||||
# via
|
||||
# clean-fid
|
||||
# diffusers
|
||||
# imageio
|
||||
# k-diffusion
|
||||
# scikit-image
|
||||
# torchvision
|
||||
platformdirs==2.5.2
|
||||
# via
|
||||
@ -181,16 +134,8 @@ platformdirs==2.5.2
|
||||
# pylint
|
||||
pluggy==1.0.0
|
||||
# via pytest
|
||||
promise==2.3
|
||||
# via wandb
|
||||
protobuf==3.19.4
|
||||
# via
|
||||
# tensorboard
|
||||
# wandb
|
||||
psutil==5.9.2
|
||||
# via
|
||||
# accelerate
|
||||
# wandb
|
||||
# via tensorboard
|
||||
py==1.11.0
|
||||
# via pytest
|
||||
pyasn1==0.4.8
|
||||
@ -215,30 +160,22 @@ pylint==2.15.2
|
||||
# via -r requirements-dev.in
|
||||
pyparsing==3.0.9
|
||||
# via packaging
|
||||
pyrsistent==0.18.1
|
||||
# via jsonschema
|
||||
pytest==7.1.3
|
||||
# via -r requirements-dev.in
|
||||
pytorch-lightning==1.4.2
|
||||
# via imaginairy (setup.py)
|
||||
pywavelets==1.3.0
|
||||
# via scikit-image
|
||||
# via imaginAIry (setup.py)
|
||||
pyyaml==6.0
|
||||
# via
|
||||
# accelerate
|
||||
# huggingface-hub
|
||||
# omegaconf
|
||||
# pytorch-lightning
|
||||
# transformers
|
||||
# wandb
|
||||
regex==2022.9.11
|
||||
# via
|
||||
# clip
|
||||
# diffusers
|
||||
# transformers
|
||||
requests==2.25.1
|
||||
requests==2.28.1
|
||||
# via
|
||||
# clean-fid
|
||||
# diffusers
|
||||
# fsspec
|
||||
# huggingface-hub
|
||||
@ -246,36 +183,14 @@ requests==2.25.1
|
||||
# tensorboard
|
||||
# torchvision
|
||||
# transformers
|
||||
# wandb
|
||||
requests-oauthlib==1.3.1
|
||||
# via google-auth-oauthlib
|
||||
resize-right==0.0.2
|
||||
# via k-diffusion
|
||||
rsa==4.9
|
||||
# via google-auth
|
||||
scikit-image==0.19.3
|
||||
# via k-diffusion
|
||||
scipy==1.9.1
|
||||
# via
|
||||
# clean-fid
|
||||
# k-diffusion
|
||||
# scikit-image
|
||||
# torchdiffeq
|
||||
sentry-sdk==1.9.8
|
||||
# via wandb
|
||||
setproctitle==1.3.2
|
||||
# via wandb
|
||||
shortuuid==1.0.9
|
||||
# via wandb
|
||||
six==1.16.0
|
||||
# via
|
||||
# docker-pycreds
|
||||
# google-auth
|
||||
# grpcio
|
||||
# promise
|
||||
# wandb
|
||||
smmap==5.0.0
|
||||
# via gitdb
|
||||
snowballstemmer==2.2.0
|
||||
# via pydocstyle
|
||||
tensorboard==2.10.0
|
||||
@ -284,8 +199,6 @@ tensorboard-data-server==0.6.1
|
||||
# via tensorboard
|
||||
tensorboard-plugin-wit==1.8.1
|
||||
# via tensorboard
|
||||
tifffile==2022.8.12
|
||||
# via scikit-image
|
||||
tokenizers==0.12.1
|
||||
# via transformers
|
||||
tomli==2.0.1
|
||||
@ -297,40 +210,26 @@ tomlkit==0.11.4
|
||||
# via pylint
|
||||
torch==1.12.1
|
||||
# via
|
||||
# accelerate
|
||||
# clean-fid
|
||||
# clip
|
||||
# diffusers
|
||||
# imaginairy (setup.py)
|
||||
# k-diffusion
|
||||
# imaginAIry (setup.py)
|
||||
# kornia
|
||||
# pytorch-lightning
|
||||
# torchdiffeq
|
||||
# torchmetrics
|
||||
# torchvision
|
||||
torchdiffeq==0.2.3
|
||||
# via k-diffusion
|
||||
torchmetrics==0.6.0
|
||||
# via
|
||||
# imaginairy (setup.py)
|
||||
# imaginAIry (setup.py)
|
||||
# pytorch-lightning
|
||||
torchvision==0.13.1
|
||||
# via
|
||||
# clean-fid
|
||||
# clip
|
||||
# imaginairy (setup.py)
|
||||
# k-diffusion
|
||||
# via imaginAIry (setup.py)
|
||||
tqdm==4.64.1
|
||||
# via
|
||||
# clean-fid
|
||||
# clip
|
||||
# huggingface-hub
|
||||
# imaginairy (setup.py)
|
||||
# k-diffusion
|
||||
# imaginAIry (setup.py)
|
||||
# pytorch-lightning
|
||||
# transformers
|
||||
transformers==4.19.2
|
||||
# via imaginairy (setup.py)
|
||||
# via imaginAIry (setup.py)
|
||||
typing-extensions==4.3.0
|
||||
# via
|
||||
# huggingface-hub
|
||||
@ -338,13 +237,7 @@ typing-extensions==4.3.0
|
||||
# torch
|
||||
# torchvision
|
||||
urllib3==1.26.12
|
||||
# via
|
||||
# requests
|
||||
# sentry-sdk
|
||||
wandb==0.13.3
|
||||
# via k-diffusion
|
||||
wcwidth==0.2.5
|
||||
# via ftfy
|
||||
# via requests
|
||||
werkzeug==2.2.2
|
||||
# via tensorboard
|
||||
wheel==0.37.1
|
||||
|
2
setup.py
2
setup.py
@ -22,6 +22,7 @@ setup(
|
||||
package_data={"imaginairy": ["configs/*.yaml"]},
|
||||
install_requires=[
|
||||
"click",
|
||||
"ftfy", # for vendored clip
|
||||
"torch",
|
||||
"numpy",
|
||||
"tqdm",
|
||||
@ -34,7 +35,6 @@ setup(
|
||||
"torchmetrics==0.6.0",
|
||||
"torchvision>=0.13.1",
|
||||
"kornia==0.6",
|
||||
"clip @ git+https://github.com/openai/CLIP",
|
||||
# k-diffusion for use with find_noise.py
|
||||
# "k-diffusion@git+https://github.com/crowsonkb/k-diffusion.git@71ba7d6735e9cba1945b429a21345960eb3f151c#egg=k-diffusion",
|
||||
],
|
||||
|
Loading…
Reference in New Issue
Block a user