Previously the `+` and `-` characters in a mask (example: `face{+0.1}`) added to the grayscale value of any masked areas. This wasn't very useful. The new behavior is that the mask will expand or contract by the number of pixel specified. The technical terms for this are dilation and erosion. This allows much greater control over the masked area.
You can use `{}` to randomly pull values from lists. A list of values separated by `|` and enclosed in `{ }` will be randomly drawn from in a non-repeating fashion. Values that are surrounded by `_ _` will pull from a phrase list of the same name. Folders containing .txt phraselist files may be specified via
`--prompt_library_path`. The option may be specified multiple times. Built-in categories:
3d-term, adj-architecture, adj-beauty, adj-detailed, adj-emotion, adj-general, adj-horror, animal, art-movement,
art-site, artist, artist-botanical, artist-surreal, aspect-ratio, bird, body-of-water, body-pose, camera-brand,
camera-model, color, cosmic-galaxy, cosmic-nebula, cosmic-star, cosmic-term, dinosaur, eyecolor, f-stop,
fantasy-creature, fantasy-setting, fish, flower, focal-length, food, fruit, games, gen-modifier, hair, hd,
iso-stop, landscape-type, national-park, nationality, neg-weight, noun-beauty, noun-fantasy, noun-general,
noun-horror, occupation, photo-term, pop-culture, pop-location, punk-style, quantity, rpg-item, scenario-desc,
skin-color, spaceship, style, tree-species, trippy, world-heritage-site
Examples:
`imagine "a {red|black} dog" -r 2 --seed 0` will generate both "a red dog" and "a black dog"
`imagine "a {_color_} dog" -r 4 --seed 0` will generate four, different colored dogs. The colors will eb pulled from an included
phraselist of colors.
`imagine "a {_spaceship_|_fruit_|hot air balloon}. low-poly" -r 4 --seed 0` will generate images of spaceships or fruits or a hot air balloon
Credit to [noodle-soup-prompts](https://github.com/WASasquatch/noodle-soup-prompts/) where most, but not all, of the wordlists originate.
If input images didn't need resizing because they were already smaller than max width/height then they didn't get normalized to a multiple of 64. This caused an exception like the following:
```Sizes of tensors must match except in dimension 1. Expected size 4 but got size 3 for tensor number 1 in the list.
```
while the previous version did produce much better blending it also makes images that lack detail for some reason.
tests: Added more tests to help catch this sort of thing earlies
fix: found that median blur is really slow, so I made sure we only do it on downsampled masks. Was taking like 3 minutes to run on the large pearl girl picture on M1
- docs: update examples
- 🎉 fix: inpainted areas correlate with surrounding image, even at 100% generation strength. Previously if the generation strength was high enough the generated image
would be uncorrelated to the rest of the surrounding image. It created terrible looking images.
- fix: mask boundaries are more accurate