refactor: standardize samplers more

pull/60/head
Bryce 2 years ago committed by Bryce Drennan
parent 497dc81d9e
commit 8d4b5cb9e1

@ -170,7 +170,7 @@ def imagine(
# torch.set_default_tensor_type(torch.HalfTensor)
prompts = [ImaginePrompt(prompts)] if isinstance(prompts, str) else prompts
prompts = [prompts] if isinstance(prompts, ImaginePrompt) else prompts
_img_callback = None
if get_device() == "cpu":
logger.info("Running in CPU mode. it's gonna be slooooooow.")
@ -279,9 +279,9 @@ def imagine(
noise = torch.randn_like(init_latent, device="cpu").to(get_device())
# todo: this isn't the right scheduler for everything...
schedule = PLMSSchedule(
ddpm_num_timesteps=model.num_timesteps,
model_num_timesteps=model.num_timesteps,
ddim_num_steps=prompt.steps,
alphas_cumprod=model.alphas_cumprod,
model_alphas_cumprod=model.alphas_cumprod,
ddim_discretize="uniform",
)
if generation_strength >= 1:
@ -301,12 +301,11 @@ def imagine(
# decode it
samples = sampler.decode(
initial_latent=z_enc,
cond=c,
positive_conditioning=c,
t_start=t_enc,
schedule=schedule,
unconditional_guidance_scale=prompt.prompt_strength,
unconditional_conditioning=uc,
img_callback=_img_callback,
guidance_scale=prompt.prompt_strength,
neutral_conditioning=uc,
mask=mask,
orig_latent=init_latent,
)
@ -314,12 +313,11 @@ def imagine(
samples = sampler.sample(
num_steps=prompt.steps,
conditioning=c,
positive_conditioning=c,
batch_size=1,
shape=shape,
unconditional_guidance_scale=prompt.prompt_strength,
unconditional_conditioning=uc,
img_callback=_img_callback,
guidance_scale=prompt.prompt_strength,
neutral_conditioning=uc,
)
x_samples = model.decode_first_stage(samples)

@ -87,7 +87,6 @@ def make_ddim_timesteps(
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
# add one to get the final alpha values right (the ones from first scale to data during sampling)
steps_out = ddim_timesteps + 1
logger.debug(f"Selected timesteps for ddim sampler: {steps_out}")
return steps_out

@ -56,7 +56,7 @@ class CFGDenoiser(nn.Module):
noisy_latent_in, time_encoding_in, cond=conditioning_in
)
denoised = get_noise_prediction(
noise_pred = get_noise_prediction(
denoise_func=_wrapper,
noisy_latent=x,
time_encoding=sigma,
@ -68,9 +68,9 @@ class CFGDenoiser(nn.Module):
if mask is not None:
assert orig_latent is not None
mask_inv = 1.0 - mask
denoised = (orig_latent * mask_inv) + (mask * denoised)
noise_pred = (orig_latent * mask_inv) + (mask * noise_pred)
return denoised
return noise_pred
def ensure_4_dim(t: torch.Tensor):
@ -93,17 +93,17 @@ def get_noise_prediction(
time_encoding_in = torch.cat([time_encoding] * 2)
conditioning_in = torch.cat([neutral_conditioning, positive_conditioning])
pred_noise_neutral, pred_noise_positive = denoise_func(
noise_pred_neutral, noise_pred_positive = denoise_func(
noisy_latent_in, time_encoding_in, conditioning_in
).chunk(2)
amplified_noise_pred = signal_amplification * (
pred_noise_positive - pred_noise_neutral
noise_pred_positive - noise_pred_neutral
)
pred_noise = pred_noise_neutral + amplified_noise_pred
noise_pred = noise_pred_neutral + amplified_noise_pred
log_latent(pred_noise_neutral, "neutral noise prediction")
log_latent(pred_noise_positive, "positive noise prediction")
log_latent(pred_noise, "noise prediction")
log_latent(noise_pred_neutral, "noise_pred_neutral")
log_latent(noise_pred_positive, "noise_pred_positive")
log_latent(noise_pred, "noise_pred")
return pred_noise
return noise_pred

@ -18,6 +18,10 @@ from imaginairy.utils import get_device
logger = logging.getLogger(__name__)
def to_torch(x):
return x.clone().detach().to(torch.float32).to(get_device())
class DDIMSchedule:
def __init__(
self,
@ -26,32 +30,31 @@ class DDIMSchedule:
ddim_num_steps,
ddim_discretize="uniform",
ddim_eta=0.0,
device=get_device(),
):
device = get_device()
if not model_alphas_cumprod.shape[0] == model_num_timesteps:
raise ValueError("alphas have to be defined for each timestep")
self.alphas_cumprod = to_torch(model_alphas_cumprod)
ddim_timesteps = make_ddim_timesteps(
ddim_discr_method=ddim_discretize,
num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=model_num_timesteps,
)
alphas_cumprod = model_alphas_cumprod
if not alphas_cumprod.shape[0] == model_num_timesteps:
raise ValueError("alphas have to be defined for each timestep")
def to_torch(x):
return x.clone().detach().to(torch.float32).to(device)
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
alphacums=alphas_cumprod.cpu(),
alphacums=model_alphas_cumprod.cpu(),
ddim_timesteps=ddim_timesteps,
eta=ddim_eta,
)
self.ddim_timesteps = ddim_timesteps
self.alphas_cumprod = to_torch(alphas_cumprod)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = to_torch(np.sqrt(alphas_cumprod.cpu()))
self.sqrt_alphas_cumprod = to_torch(np.sqrt(model_alphas_cumprod.cpu()))
self.sqrt_one_minus_alphas_cumprod = to_torch(
np.sqrt(1.0 - alphas_cumprod.cpu())
np.sqrt(1.0 - model_alphas_cumprod.cpu())
)
self.ddim_sigmas = ddim_sigmas.to(torch.float32).to(device)
self.ddim_alphas = ddim_alphas.to(torch.float32).to(device)
@ -70,186 +73,138 @@ class DDIMSampler:
def __init__(self, model):
self.model = model
self.device = get_device()
@torch.no_grad()
def sample(
self,
num_steps,
batch_size,
shape,
conditioning,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.0,
neutral_conditioning,
positive_conditioning,
guidance_scale=1.0,
batch_size=1,
mask=None,
x0=None,
orig_latent=None,
temperature=1.0,
noise_dropout=0.0,
x_T=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
**kwargs,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
initial_latent=None,
quantize_x0=False,
):
if conditioning.shape[0] != batch_size:
logger.warning(
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
if positive_conditioning.shape[0] != batch_size:
raise ValueError(
f"Got {positive_conditioning.shape[0]} conditionings but batch-size is {batch_size}"
)
schedule = DDIMSchedule(
model_num_timesteps=self.model.num_timesteps,
model_alphas_cumprod=self.model.alphas_cumprod,
ddim_num_steps=num_steps,
ddim_discretize="uniform",
ddim_eta=0.0,
)
samples = self.ddim_sampling(
conditioning,
shape=shape,
schedule=schedule,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask,
x0=x0,
noise_dropout=noise_dropout,
temperature=temperature,
x_T=x_T,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
return samples
if initial_latent is None:
initial_latent = torch.randn(shape, device="cpu").to(self.device)
@torch.no_grad()
def ddim_sampling(
self,
cond,
shape,
schedule,
x_T=None,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
img_callback=None,
temperature=1.0,
noise_dropout=0.0,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
):
device = self.model.betas.device
b = shape[0]
if x_T is None:
# run on CPU for seed consistency. M1/mps runs were not consistent otherwise
img = torch.randn(shape, device="cpu").to(device)
else:
img = x_T
log_latent(img, "initial noise")
if timesteps is None:
timesteps = schedule.ddim_timesteps
else:
subset_end = (
int(
min(timesteps / schedule.ddim_timesteps.shape[0], 1)
* schedule.ddim_timesteps.shape[0]
)
- 1
)
timesteps = schedule.ddim_timesteps[:subset_end]
log_latent(initial_latent, "initial latent")
timesteps = schedule.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
logger.info(f"Running DDIM Sampling with {total_steps} timesteps")
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
noisy_latent = initial_latent
for i, step in enumerate(iterator):
for i, step in enumerate(tqdm(time_range, total=total_steps)):
index = total_steps - i - 1
ts = torch.full((b,), step, device=device, dtype=torch.long)
ts = torch.full((batch_size,), step, device=self.device, dtype=torch.long)
if mask is not None:
assert x0 is not None
img_orig = self.model.q_sample(
x0, ts
) # TODO: deterministic forward pass?
img = img_orig * mask + (1.0 - mask) * img
img, pred_x0 = self.p_sample_ddim(
img,
cond,
ts,
assert orig_latent is not None
img_orig = self.model.q_sample(orig_latent, ts)
noisy_latent = img_orig * mask + (1.0 - mask) * noisy_latent
noisy_latent, predicted_latent = self.p_sample_ddim(
noisy_latent=noisy_latent,
neutral_conditioning=neutral_conditioning,
positive_conditioning=positive_conditioning,
guidance_scale=guidance_scale,
time_encoding=ts,
index=index,
schedule=schedule,
quantize_denoised=quantize_denoised,
quantize_denoised=quantize_x0,
temperature=temperature,
noise_dropout=noise_dropout,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
if callback:
callback(i)
log_latent(img, "img")
log_latent(pred_x0, "pred_x0")
log_latent(noisy_latent, "noisy_latent")
log_latent(predicted_latent, "predicted_latent")
return img
return noisy_latent
def p_sample_ddim(
self,
x,
c,
t,
noisy_latent,
neutral_conditioning,
positive_conditioning,
guidance_scale,
time_encoding,
index,
schedule,
repeat_noise=False,
quantize_denoised=False,
temperature=1.0,
noise_dropout=0.0,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
loss_function=None,
):
assert unconditional_guidance_scale >= 1
assert guidance_scale >= 1
noise_pred = get_noise_prediction(
denoise_func=self.model.apply_model,
noisy_latent=x,
time_encoding=t,
neutral_conditioning=unconditional_conditioning,
positive_conditioning=c,
signal_amplification=unconditional_guidance_scale,
noisy_latent=noisy_latent,
time_encoding=time_encoding,
neutral_conditioning=neutral_conditioning,
positive_conditioning=positive_conditioning,
signal_amplification=guidance_scale,
)
b = x.shape[0]
log_latent(noise_pred, "noise prediction")
batch_size = noisy_latent.shape[0]
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), schedule.ddim_alphas[index], device=x.device)
a_t = torch.full(
(batch_size, 1, 1, 1),
schedule.ddim_alphas[index],
device=noisy_latent.device,
)
a_prev = torch.full(
(b, 1, 1, 1), schedule.ddim_alphas_prev[index], device=x.device
(batch_size, 1, 1, 1),
schedule.ddim_alphas_prev[index],
device=noisy_latent.device,
)
sigma_t = torch.full(
(batch_size, 1, 1, 1),
schedule.ddim_sigmas[index],
device=noisy_latent.device,
)
sigma_t = torch.full((b, 1, 1, 1), schedule.ddim_sigmas[index], device=x.device)
sqrt_one_minus_at = torch.full(
(b, 1, 1, 1), schedule.ddim_sqrt_one_minus_alphas[index], device=x.device
(batch_size, 1, 1, 1),
schedule.ddim_sqrt_one_minus_alphas[index],
device=noisy_latent.device,
)
return self._p_sample_ddim_formula(
x,
noise_pred,
sqrt_one_minus_at,
a_t,
sigma_t,
a_prev,
noise_dropout,
repeat_noise,
temperature,
noisy_latent, predicted_latent = self._p_sample_ddim_formula(
noisy_latent=noisy_latent,
noise_pred=noise_pred,
sqrt_one_minus_at=sqrt_one_minus_at,
a_t=a_t,
sigma_t=sigma_t,
a_prev=a_prev,
noise_dropout=noise_dropout,
repeat_noise=repeat_noise,
temperature=temperature,
)
return noisy_latent, predicted_latent
@staticmethod
def _p_sample_ddim_formula(
x,
noisy_latent,
noise_pred,
sqrt_one_minus_at,
a_t,
@ -259,15 +214,18 @@ class DDIMSampler:
repeat_noise,
temperature,
):
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * noise_pred) / a_t.sqrt()
predicted_latent = (noisy_latent - sqrt_one_minus_at * noise_pred) / a_t.sqrt()
# direction pointing to x_t
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * noise_pred
noise = sigma_t * noise_like(x.shape, x.device, repeat_noise) * temperature
noise = (
sigma_t
* noise_like(noisy_latent.shape, noisy_latent.device, repeat_noise)
* temperature
)
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
x_prev = a_prev.sqrt() * predicted_latent + dir_xt + noise
return x_prev, predicted_latent
@torch.no_grad()
def noise_an_image(self, init_latent, t, schedule, noise=None):
@ -288,12 +246,11 @@ class DDIMSampler:
def decode(
self,
initial_latent,
cond,
neutral_conditioning,
positive_conditioning,
guidance_scale,
t_start,
schedule,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
img_callback=None,
temperature=1.0,
mask=None,
orig_latent=None,
@ -303,12 +260,10 @@ class DDIMSampler:
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
logger.debug(f"Running DDIM Sampling with {total_steps} timesteps")
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
x_dec = initial_latent
noisy_latent = initial_latent
for i, step in enumerate(iterator):
for i, step in enumerate(tqdm(time_range, total=total_steps)):
index = total_steps - i - 1
ts = torch.full(
(initial_latent.shape[0],),
@ -329,20 +284,20 @@ class DDIMSampler:
)
else:
xdec_orig_with_hints = xdec_orig
x_dec = xdec_orig_with_hints * mask + (1.0 - mask) * x_dec
log_latent(x_dec, "x_dec")
noisy_latent = xdec_orig_with_hints * mask + (1.0 - mask) * noisy_latent
log_latent(noisy_latent, "noisy_latent")
x_dec, pred_x0 = self.p_sample_ddim(
x_dec,
cond,
ts,
noisy_latent, predicted_latent = self.p_sample_ddim(
noisy_latent=noisy_latent,
positive_conditioning=positive_conditioning,
time_encoding=ts,
schedule=schedule,
index=index,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
guidance_scale=guidance_scale,
neutral_conditioning=neutral_conditioning,
temperature=temperature,
)
log_latent(x_dec, f"x_dec {i}")
log_latent(pred_x0, f"pred_x0 {i}")
return x_dec
log_latent(noisy_latent, f"noisy_latent {i}")
log_latent(predicted_latent, f"predicted_latent {i}")
return noisy_latent

@ -19,43 +19,49 @@ class KDiffusionSampler:
self.cv_denoiser = StandardCompVisDenoiser(model)
self.sampler_name = sampler_name
self.sampler_func = getattr(k_sampling, f"sample_{sampler_name}")
self.device = get_device()
def sample(
self,
num_steps,
conditioning,
batch_size,
shape,
unconditional_guidance_scale,
unconditional_conditioning,
initial_noise_tensor=None,
neutral_conditioning,
positive_conditioning,
guidance_scale,
batch_size=1,
mask=None,
orig_latent=None,
initial_latent=None,
img_callback=None,
):
initial_noise_tensor = (
torch.randn(shape, device="cpu").to(get_device())
if initial_noise_tensor is None
else initial_noise_tensor
)
log_latent(initial_noise_tensor, "initial_noise_tensor")
if positive_conditioning.shape[0] != batch_size:
raise ValueError(
f"Got {positive_conditioning.shape[0]} conditionings but batch-size is {batch_size}"
)
if initial_latent is None:
initial_latent = torch.randn(shape, device="cpu").to(self.device)
log_latent(initial_latent, "initial_latent")
sigmas = self.cv_denoiser.get_sigmas(num_steps)
x = initial_noise_tensor * sigmas[0]
x = initial_latent * sigmas[0]
log_latent(x, "initial_sigma_noised_tensor")
model_wrap_cfg = CFGDenoiser(self.cv_denoiser)
def callback(data):
log_latent(data["x"], "x")
log_latent(data["denoised"], "denoised")
log_latent(data["x"], "noisy_latent")
log_latent(data["denoised"], "noise_pred")
samples = self.sampler_func(
model_wrap_cfg,
x,
sigmas,
model=model_wrap_cfg,
x=x,
sigmas=sigmas,
extra_args={
"cond": conditioning,
"uncond": unconditional_conditioning,
"cond_scale": unconditional_guidance_scale,
"cond": positive_conditioning,
"uncond": neutral_conditioning,
"cond_scale": guidance_scale,
},
disable=False,
callback=callback,

@ -18,39 +18,38 @@ from imaginairy.utils import get_device
logger = logging.getLogger(__name__)
def to_torch(x):
return x.clone().detach().to(torch.float32).to(get_device())
class PLMSSchedule:
def __init__(
self,
ddpm_num_timesteps, # 1000?
model_num_timesteps, # 1000?
model_alphas_cumprod,
ddim_num_steps, # prompt.steps?
alphas_cumprod,
ddim_discretize="uniform",
):
device = get_device()
if model_alphas_cumprod.shape[0] != model_num_timesteps:
raise ValueError("alphas have to be defined for each timestep")
assert (
alphas_cumprod.shape[0] == ddpm_num_timesteps
), "alphas have to be defined for each timestep"
def to_torch(x):
return x.clone().detach().to(torch.float32).to(device)
self.alphas_cumprod = to_torch(alphas_cumprod)
self.alphas_cumprod = to_torch(model_alphas_cumprod)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = to_torch(np.sqrt(alphas_cumprod.cpu()))
self.sqrt_alphas_cumprod = to_torch(np.sqrt(model_alphas_cumprod.cpu()))
self.sqrt_one_minus_alphas_cumprod = to_torch(
np.sqrt(1.0 - alphas_cumprod.cpu())
np.sqrt(1.0 - model_alphas_cumprod.cpu())
)
self.ddim_timesteps = make_ddim_timesteps(
ddim_discr_method=ddim_discretize,
num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=ddpm_num_timesteps,
num_ddpm_timesteps=model_num_timesteps,
)
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
alphacums=alphas_cumprod.cpu(),
alphacums=model_alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=0.0,
)
@ -63,7 +62,14 @@ class PLMSSchedule:
class PLMSSampler:
"""probabilistic least-mean-squares"""
"""
probabilistic least-mean-squares
Provenance:
https://github.com/CompVis/latent-diffusion/commit/f0c4e092c156986e125f48c61a0edd38ba8ad059
https://arxiv.org/abs/2202.09778
https://github.com/luping-liu/PNDM
"""
def __init__(self, model):
self.model = model
@ -73,106 +79,89 @@ class PLMSSampler:
def sample(
self,
num_steps,
batch_size,
shape,
conditioning=None,
callback=None,
img_callback=None,
quantize_x0=False,
eta=0.0,
neutral_conditioning,
positive_conditioning,
guidance_scale=1.0,
batch_size=1,
mask=None,
orig_latent=None,
temperature=1.0,
noise_dropout=0.0,
initial_latent=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
timesteps=None,
quantize_denoised=False,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs,
):
if conditioning.shape[0] != batch_size:
logger.warning(
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
if positive_conditioning.shape[0] != batch_size:
raise ValueError(
f"Got {positive_conditioning.shape[0]} conditionings but batch-size is {batch_size}"
)
schedule = PLMSSchedule(
ddpm_num_timesteps=self.model.num_timesteps,
model_num_timesteps=self.model.num_timesteps,
ddim_num_steps=num_steps,
alphas_cumprod=self.model.alphas_cumprod,
model_alphas_cumprod=self.model.alphas_cumprod,
ddim_discretize="uniform",
)
device = self.device
# batch_size = shape[0]
if initial_latent is None:
initial_latent = torch.randn(shape, device="cpu").to(device)
initial_latent = torch.randn(shape, device="cpu").to(self.device)
log_latent(initial_latent, "initial latent")
if timesteps is None:
timesteps = schedule.ddim_timesteps
elif timesteps is not None:
subset_end = (
int(
min(timesteps / schedule.ddim_timesteps.shape[0], 1)
* schedule.ddim_timesteps.shape[0]
)
- 1
)
timesteps = schedule.ddim_timesteps[:subset_end]
timesteps = schedule.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
logger.debug(f"Running PLMS Sampling with {total_steps} timesteps")
iterator = tqdm(time_range, desc=" PLMS Sampler", total=total_steps)
old_eps = []
img = initial_latent
noisy_latent = initial_latent
for i, step in enumerate(iterator):
for i, step in enumerate(tqdm(time_range, total=total_steps)):
index = total_steps - i - 1
ts = torch.full((batch_size,), step, device=device, dtype=torch.long)
ts = torch.full((batch_size,), step, device=self.device, dtype=torch.long)
ts_next = torch.full(
(batch_size,),
time_range[min(i + 1, len(time_range) - 1)],
device=device,
device=self.device,
dtype=torch.long,
)
if mask is not None:
assert orig_latent is not None
img_orig = self.model.q_sample(orig_latent, ts)
img = img_orig * mask + (1.0 - mask) * img
noisy_latent = img_orig * mask + (1.0 - mask) * noisy_latent
img, pred_x0, noise_prediction = self.p_sample_plms(
img,
conditioning,
ts,
noisy_latent, predicted_latent, noise_pred = self.p_sample_plms(
noisy_latent=noisy_latent,
neutral_conditioning=neutral_conditioning,
positive_conditioning=positive_conditioning,
guidance_scale=guidance_scale,
time_encoding=ts,
schedule=schedule,
index=index,
quantize_denoised=quantize_denoised,
temperature=temperature,
noise_dropout=noise_dropout,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
old_eps=old_eps,
t_next=ts_next,
)
old_eps.append(noise_prediction)
old_eps.append(noise_pred)
if len(old_eps) >= 4:
old_eps.pop(0)
if callback:
callback(i)
if img_callback:
img_callback(img, "img")
img_callback(pred_x0, "pred_x0")
return img
log_latent(noisy_latent, "noisy_latent")
log_latent(predicted_latent, "predicted_latent")
return noisy_latent
@torch.no_grad()
def p_sample_plms(
self,
noisy_latent,
neutral_conditioning,
positive_conditioning,
guidance_scale,
time_encoding,
schedule: PLMSSchedule,
index,
@ -180,20 +169,19 @@ class PLMSSampler:
quantize_denoised=False,
temperature=1.0,
noise_dropout=0.0,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
old_eps=None,
t_next=None,
):
batch_size = noisy_latent.shape[0]
noise_prediction = get_noise_prediction(
assert guidance_scale >= 1
noise_pred = get_noise_prediction(
denoise_func=self.model.apply_model,
noisy_latent=noisy_latent,
time_encoding=time_encoding,
neutral_conditioning=unconditional_conditioning,
neutral_conditioning=neutral_conditioning,
positive_conditioning=positive_conditioning,
signal_amplification=unconditional_guidance_scale,
signal_amplification=guidance_scale,
)
batch_size = noisy_latent.shape[0]
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
@ -232,38 +220,33 @@ class PLMSSampler:
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(noise_prediction, index)
x_prev, pred_x0 = get_x_prev_and_pred_x0(noise_pred, index)
e_t_next = get_noise_prediction(
denoise_func=self.model.apply_model,
noisy_latent=x_prev,
time_encoding=t_next,
neutral_conditioning=unconditional_conditioning,
neutral_conditioning=neutral_conditioning,
positive_conditioning=positive_conditioning,
signal_amplification=unconditional_guidance_scale,
signal_amplification=guidance_scale,
)
e_t_prime = (noise_prediction + e_t_next) / 2
e_t_prime = (noise_pred + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * noise_prediction - old_eps[-1]) / 2
e_t_prime = (3 * noise_pred - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (
23 * noise_prediction - 16 * old_eps[-1] + 5 * old_eps[-2]
) / 12
e_t_prime = (23 * noise_pred - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (
55 * noise_prediction
- 59 * old_eps[-1]
+ 37 * old_eps[-2]
- 9 * old_eps[-3]
55 * noise_pred - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
log_latent(x_prev, "x_prev")
log_latent(pred_x0, "pred_x0")
return x_prev, pred_x0, noise_prediction
return x_prev, pred_x0, noise_pred
@torch.no_grad()
def noise_an_image(self, init_latent, t, schedule, noise=None):
@ -285,25 +268,22 @@ class PLMSSampler:
@torch.no_grad()
def decode(
self,
cond,
neutral_conditioning,
positive_conditioning,
guidance_scale,
schedule,
initial_latent=None,
t_start=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
img_callback=None,
temperature=1.0,
mask=None,
orig_latent=None,
noise=None,
):
device = self.device
timesteps = schedule.ddim_timesteps[:t_start]
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
iterator = tqdm(time_range, desc="PLMS img2img", total=total_steps)
x_dec = initial_latent
old_eps = []
log_latent(x_dec, "x_dec")
@ -315,7 +295,7 @@ class PLMSSampler:
if noise is None
else noise
)
for i, step in enumerate(iterator):
for i, step in enumerate(tqdm(time_range, total=total_steps)):
index = total_steps - i - 1
ts = torch.full(
(initial_latent.shape[0],),
@ -326,7 +306,7 @@ class PLMSSampler:
ts_next = torch.full(
(initial_latent.shape[0],),
time_range[min(i + 1, len(time_range) - 1)],
device=device,
device=self.device,
dtype=torch.long,
)
@ -346,13 +326,13 @@ class PLMSSampler:
log_latent(x_dec, f"x_dec {ts}")
x_dec, pred_x0, noise_prediction = self.p_sample_plms(
x_dec,
cond,
ts,
noisy_latent=x_dec,
guidance_scale=guidance_scale,
neutral_conditioning=neutral_conditioning,
positive_conditioning=positive_conditioning,
time_encoding=ts,
schedule=schedule,
index=index,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
temperature=temperature,
old_eps=old_eps,
t_next=ts_next,
@ -362,11 +342,6 @@ class PLMSSampler:
if len(old_eps) >= 4:
old_eps.pop(0)
if img_callback:
img_callback(x_dec, "x_dec")
img_callback(pred_x0, "pred_x0")
log_latent(x_dec, f"x_dec {i}")
log_latent(x_dec, f"e_t {i}")
log_latent(pred_x0, f"pred_x0 {i}")
return x_dec

Loading…
Cancel
Save