imaginAIry/imaginairy/img_utils.py

146 lines
4.3 KiB
Python
Raw Normal View History

from typing import Sequence
import numpy as np
import PIL
import torch
from einops import rearrange, repeat
from PIL import Image, ImageDraw, ImageFont
from imaginairy.paths import PKG_ROOT
from imaginairy.schema import LazyLoadingImage
from imaginairy.utils import get_device
def pillow_fit_image_within(
image: PIL.Image.Image, max_height=512, max_width=512, convert="RGB", snap_size=8
):
image = image.convert(convert)
w, h = image.size
resize_ratio = 1
if w > max_width or h > max_height:
resize_ratio = min(max_width / w, max_height / h)
elif w < max_width and h < max_height:
# it's smaller than our target image, enlarge
resize_ratio = max(max_width / w, max_height / h)
if resize_ratio != 1:
w, h = int(w * resize_ratio), int(h * resize_ratio)
# resize to integer multiple of snap_size
w -= w % snap_size
h -= h % snap_size
2023-01-02 04:14:22 +00:00
if (w, h) != image.size:
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
2022-09-24 07:29:45 +00:00
return image
def pillow_img_to_torch_image(img: PIL.Image.Image, convert="RGB"):
if convert:
img = img.convert(convert)
img = np.array(img).astype(np.float32) / 255.0
img = img[None].transpose(0, 3, 1, 2)
img = torch.from_numpy(img)
return 2.0 * img - 1.0
def pillow_mask_to_latent_mask(mask_img: PIL.Image.Image, downsampling_factor):
mask_img = mask_img.resize(
(
mask_img.width // downsampling_factor,
mask_img.height // downsampling_factor,
),
resample=Image.Resampling.LANCZOS,
)
mask = np.array(mask_img).astype(np.float32) / 255.0
mask = mask[None, None]
mask = torch.from_numpy(mask)
return mask
def pillow_img_to_opencv_img(img: PIL.Image.Image):
open_cv_image = np.array(img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def torch_img_to_pillow_img(img_t: torch.Tensor):
img_t = img_t.to(torch.float32).detach().cpu()
if len(img_t.shape) == 3:
img_t = img_t.unsqueeze(0)
if img_t.shape[0] != 1:
raise ValueError("Only batch size 1 supported")
if img_t.shape[1] == 1:
colorspace = "L"
elif img_t.shape[1] == 3:
colorspace = "RGB"
else:
raise ValueError(
f"Unsupported colorspace. {img_t.shape[1]} channels in {img_t.shape} shape"
)
img_t = rearrange(img_t, "b c h w -> b h w c")
img_t = torch.clamp((img_t + 1.0) / 2.0, min=0.0, max=1.0)
img_np = (255.0 * img_t).cpu().numpy().astype(np.uint8)[0]
if colorspace == "L":
img_np = img_np[:, :, 0]
return Image.fromarray(img_np, colorspace)
def model_latent_to_pillow_img(latent: torch.Tensor) -> PIL.Image.Image:
from imaginairy.model_manager import get_current_diffusion_model # noqa
if len(latent.shape) == 3:
latent = latent.unsqueeze(0)
if latent.shape[0] != 1:
raise ValueError("Only batch size 1 supported")
model = get_current_diffusion_model()
img_t = model.decode_first_stage(latent)
return torch_img_to_pillow_img(img_t)
def model_latents_to_pillow_imgs(latents: torch.Tensor) -> Sequence[PIL.Image.Image]:
return [model_latent_to_pillow_img(latent) for latent in latents]
def pillow_img_to_model_latent(model, img, batch_size=1, half=True):
init_image = pillow_img_to_torch_image(img).to(get_device())
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
if half:
return model.get_first_stage_encoding(
model.encode_first_stage(init_image.half())
)
return model.get_first_stage_encoding(model.encode_first_stage(init_image))
def imgpaths_to_imgs(imgpaths):
imgs = []
for imgpath in imgpaths:
if isinstance(imgpath, str):
img = LazyLoadingImage(filepath=imgpath)
imgs.append(img)
else:
imgs.append(imgpath)
return imgs
def add_caption_to_image(
img, caption, font_size=16, font_path=f"{PKG_ROOT}/data/DejaVuSans.ttf"
):
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(font_path, font_size)
x = 15
y = img.height - 15 - font_size
draw.text(
(x, y),
caption,
font=font,
fill=(255, 255, 255),
stroke_width=3,
stroke_fill=(0, 0, 0),
)