2022-09-24 05:58:48 +00:00
|
|
|
from typing import Sequence
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import PIL
|
|
|
|
import torch
|
|
|
|
from einops import rearrange, repeat
|
2023-01-29 01:16:47 +00:00
|
|
|
from PIL import Image, ImageDraw, ImageFont
|
2022-09-24 05:58:48 +00:00
|
|
|
|
2023-01-29 01:16:47 +00:00
|
|
|
from imaginairy.paths import PKG_ROOT
|
|
|
|
from imaginairy.schema import LazyLoadingImage
|
2022-09-24 05:58:48 +00:00
|
|
|
from imaginairy.utils import get_device
|
|
|
|
|
|
|
|
|
2023-01-01 22:54:49 +00:00
|
|
|
def pillow_fit_image_within(
|
2023-01-24 06:25:56 +00:00
|
|
|
image: PIL.Image.Image, max_height=512, max_width=512, convert="RGB", snap_size=8
|
2023-01-01 22:54:49 +00:00
|
|
|
):
|
|
|
|
image = image.convert(convert)
|
2022-09-24 05:58:48 +00:00
|
|
|
w, h = image.size
|
2022-10-06 06:13:48 +00:00
|
|
|
resize_ratio = 1
|
2022-09-24 21:41:25 +00:00
|
|
|
if w > max_width or h > max_height:
|
|
|
|
resize_ratio = min(max_width / w, max_height / h)
|
2022-10-06 06:13:48 +00:00
|
|
|
elif w < max_width and h < max_height:
|
|
|
|
# it's smaller than our target image, enlarge
|
|
|
|
resize_ratio = max(max_width / w, max_height / h)
|
|
|
|
|
|
|
|
if resize_ratio != 1:
|
2022-09-24 21:41:25 +00:00
|
|
|
w, h = int(w * resize_ratio), int(h * resize_ratio)
|
2023-01-24 06:25:56 +00:00
|
|
|
# resize to integer multiple of snap_size
|
|
|
|
w -= w % snap_size
|
|
|
|
h -= h % snap_size
|
2023-01-02 04:14:22 +00:00
|
|
|
|
2022-10-06 06:13:48 +00:00
|
|
|
if (w, h) != image.size:
|
2022-09-24 21:41:25 +00:00
|
|
|
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
|
2022-09-24 07:29:45 +00:00
|
|
|
return image
|
2022-09-24 05:58:48 +00:00
|
|
|
|
|
|
|
|
2023-02-15 16:02:36 +00:00
|
|
|
def pillow_img_to_torch_image(img: PIL.Image.Image, convert="RGB"):
|
|
|
|
if convert:
|
|
|
|
img = img.convert(convert)
|
2022-09-24 05:58:48 +00:00
|
|
|
img = np.array(img).astype(np.float32) / 255.0
|
|
|
|
img = img[None].transpose(0, 3, 1, 2)
|
|
|
|
img = torch.from_numpy(img)
|
|
|
|
return 2.0 * img - 1.0
|
|
|
|
|
|
|
|
|
2023-02-15 16:02:36 +00:00
|
|
|
def pillow_mask_to_latent_mask(mask_img: PIL.Image.Image, downsampling_factor):
|
|
|
|
mask_img = mask_img.resize(
|
|
|
|
(
|
|
|
|
mask_img.width // downsampling_factor,
|
|
|
|
mask_img.height // downsampling_factor,
|
|
|
|
),
|
|
|
|
resample=Image.Resampling.LANCZOS,
|
|
|
|
)
|
|
|
|
|
|
|
|
mask = np.array(mask_img).astype(np.float32) / 255.0
|
|
|
|
mask = mask[None, None]
|
|
|
|
mask = torch.from_numpy(mask)
|
|
|
|
return mask
|
2023-02-12 08:52:50 +00:00
|
|
|
|
|
|
|
|
2022-09-24 05:58:48 +00:00
|
|
|
def pillow_img_to_opencv_img(img: PIL.Image.Image):
|
|
|
|
open_cv_image = np.array(img)
|
|
|
|
# Convert RGB to BGR
|
|
|
|
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
|
|
|
return open_cv_image
|
|
|
|
|
|
|
|
|
2023-02-15 16:02:36 +00:00
|
|
|
def torch_img_to_pillow_img(img_t: torch.Tensor):
|
|
|
|
if len(img_t.shape) == 3:
|
|
|
|
img_t = img_t.unsqueeze(0)
|
|
|
|
if img_t.shape[0] != 1:
|
|
|
|
raise ValueError("Only batch size 1 supported")
|
|
|
|
if img_t.shape[1] == 1:
|
|
|
|
colorspace = "L"
|
|
|
|
elif img_t.shape[1] == 3:
|
|
|
|
colorspace = "RGB"
|
|
|
|
else:
|
|
|
|
raise ValueError("Unsupported colorspace")
|
|
|
|
img_t = rearrange(img_t, "b c h w -> b h w c")
|
|
|
|
img_t = torch.clamp((img_t + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
img_np = (255.0 * img_t).cpu().numpy().astype(np.uint8)[0]
|
|
|
|
if colorspace == "L":
|
|
|
|
img_np = img_np[:, :, 0]
|
|
|
|
return Image.fromarray(img_np, colorspace)
|
|
|
|
|
|
|
|
|
|
|
|
def model_latent_to_pillow_img(latent: torch.Tensor) -> PIL.Image.Image:
|
2022-10-23 21:46:45 +00:00
|
|
|
from imaginairy.model_manager import get_current_diffusion_model # noqa
|
2022-09-24 05:58:48 +00:00
|
|
|
|
2023-02-15 16:02:36 +00:00
|
|
|
if len(latent.shape) == 3:
|
|
|
|
latent = latent.unsqueeze(0)
|
|
|
|
if latent.shape[0] != 1:
|
|
|
|
raise ValueError("Only batch size 1 supported")
|
2022-10-23 21:46:45 +00:00
|
|
|
model = get_current_diffusion_model()
|
2023-02-15 16:02:36 +00:00
|
|
|
img_t = model.decode_first_stage(latent)
|
|
|
|
return torch_img_to_pillow_img(img_t)
|
|
|
|
|
|
|
|
|
|
|
|
def model_latents_to_pillow_imgs(latents: torch.Tensor) -> Sequence[PIL.Image.Image]:
|
|
|
|
return [model_latent_to_pillow_img(latent) for latent in latents]
|
2022-09-24 05:58:48 +00:00
|
|
|
|
|
|
|
|
|
|
|
def pillow_img_to_model_latent(model, img, batch_size=1, half=True):
|
|
|
|
init_image = pillow_img_to_torch_image(img).to(get_device())
|
|
|
|
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
|
|
|
|
if half:
|
|
|
|
return model.get_first_stage_encoding(
|
|
|
|
model.encode_first_stage(init_image.half())
|
|
|
|
)
|
|
|
|
return model.get_first_stage_encoding(model.encode_first_stage(init_image))
|
2023-01-22 01:36:47 +00:00
|
|
|
|
|
|
|
|
2023-01-29 01:16:47 +00:00
|
|
|
def imgpaths_to_imgs(imgpaths):
|
|
|
|
imgs = []
|
|
|
|
for imgpath in imgpaths:
|
|
|
|
if isinstance(imgpath, str):
|
|
|
|
img = LazyLoadingImage(filepath=imgpath)
|
|
|
|
imgs.append(img)
|
|
|
|
else:
|
|
|
|
imgs.append(imgpath)
|
|
|
|
|
|
|
|
return imgs
|
|
|
|
|
|
|
|
|
|
|
|
def add_caption_to_image(
|
|
|
|
img, caption, font_size=16, font_path=f"{PKG_ROOT}/data/DejaVuSans.ttf"
|
|
|
|
):
|
|
|
|
draw = ImageDraw.Draw(img)
|
|
|
|
|
|
|
|
font = ImageFont.truetype(font_path, font_size)
|
|
|
|
|
|
|
|
x = 15
|
|
|
|
y = img.height - 15 - font_size
|
2023-01-22 01:36:47 +00:00
|
|
|
|
2023-01-29 01:16:47 +00:00
|
|
|
draw.text(
|
|
|
|
(x, y),
|
|
|
|
caption,
|
|
|
|
font=font,
|
|
|
|
fill=(255, 255, 255),
|
|
|
|
stroke_width=3,
|
|
|
|
stroke_fill=(0, 0, 0),
|
2023-01-22 01:36:47 +00:00
|
|
|
)
|