2022-09-12 05:22:43 +00:00
|
|
|
import hashlib
|
|
|
|
import os
|
|
|
|
import urllib
|
|
|
|
import warnings
|
2022-09-20 04:15:38 +00:00
|
|
|
from typing import List, Union
|
2022-09-12 05:22:43 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
|
|
|
from pkg_resources import packaging
|
|
|
|
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
from .model import build_model
|
|
|
|
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
|
|
|
|
|
|
|
try:
|
|
|
|
from torchvision.transforms import InterpolationMode
|
|
|
|
|
|
|
|
BICUBIC = InterpolationMode.BICUBIC
|
|
|
|
except ImportError:
|
|
|
|
BICUBIC = Image.BICUBIC
|
|
|
|
|
|
|
|
|
|
|
|
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
|
|
|
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ["available_models", "load", "tokenize"]
|
|
|
|
_tokenizer = _Tokenizer()
|
|
|
|
|
|
|
|
_MODELS = {
|
|
|
|
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
|
|
|
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
|
|
|
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
|
|
|
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
|
|
|
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
|
|
|
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
|
|
|
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
|
|
|
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
|
|
|
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def _download(url: str, root: str):
|
|
|
|
os.makedirs(root, exist_ok=True)
|
|
|
|
filename = os.path.basename(url)
|
|
|
|
|
|
|
|
expected_sha256 = url.split("/")[-2]
|
|
|
|
download_target = os.path.join(root, filename)
|
|
|
|
|
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
|
|
|
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
|
|
|
|
|
|
|
if os.path.isfile(download_target):
|
|
|
|
if (
|
|
|
|
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
|
|
|
== expected_sha256
|
|
|
|
):
|
|
|
|
return download_target
|
|
|
|
else:
|
|
|
|
warnings.warn(
|
|
|
|
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
|
|
|
|
)
|
|
|
|
|
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
|
|
|
with tqdm(
|
|
|
|
total=int(source.info().get("Content-Length")),
|
|
|
|
ncols=80,
|
|
|
|
unit="iB",
|
|
|
|
unit_scale=True,
|
|
|
|
unit_divisor=1024,
|
|
|
|
) as loop:
|
|
|
|
while True:
|
|
|
|
buffer = source.read(8192)
|
|
|
|
if not buffer:
|
|
|
|
break
|
|
|
|
|
|
|
|
output.write(buffer)
|
|
|
|
loop.update(len(buffer))
|
|
|
|
|
|
|
|
if (
|
|
|
|
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
|
|
|
!= expected_sha256
|
|
|
|
):
|
|
|
|
raise RuntimeError(
|
|
|
|
"Model has been downloaded but the SHA256 checksum does not not match"
|
|
|
|
)
|
|
|
|
|
|
|
|
return download_target
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_image_to_rgb(image):
|
|
|
|
return image.convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
def _transform(n_px):
|
|
|
|
return Compose(
|
|
|
|
[
|
|
|
|
Resize(n_px, interpolation=BICUBIC),
|
|
|
|
CenterCrop(n_px),
|
|
|
|
_convert_image_to_rgb,
|
|
|
|
ToTensor(),
|
|
|
|
Normalize(
|
|
|
|
(0.48145466, 0.4578275, 0.40821073),
|
|
|
|
(0.26862954, 0.26130258, 0.27577711),
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def available_models() -> List[str]:
|
2023-01-02 04:14:22 +00:00
|
|
|
"""Returns the names of available CLIP models."""
|
2022-09-12 05:22:43 +00:00
|
|
|
return list(_MODELS.keys())
|
|
|
|
|
|
|
|
|
|
|
|
def load(
|
|
|
|
name: str,
|
|
|
|
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
|
|
|
|
jit: bool = False,
|
|
|
|
download_root: str = None,
|
|
|
|
):
|
2023-01-02 04:14:22 +00:00
|
|
|
"""Load a CLIP model.
|
2022-09-12 05:22:43 +00:00
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
name : str
|
|
|
|
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
|
|
|
|
|
|
|
device : Union[str, torch.device]
|
|
|
|
The device to put the loaded model
|
|
|
|
|
|
|
|
jit : bool
|
|
|
|
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
|
|
|
|
|
|
|
download_root: str
|
|
|
|
path to download the model files; by default, it uses "~/.cache/clip"
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
model : torch.nn.Module
|
|
|
|
The CLIP model
|
|
|
|
|
|
|
|
preprocess : Callable[[PIL.Image], torch.Tensor]
|
|
|
|
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
|
|
|
"""
|
|
|
|
if name in _MODELS:
|
|
|
|
model_path = _download(
|
|
|
|
_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")
|
|
|
|
)
|
|
|
|
elif os.path.isfile(name):
|
|
|
|
model_path = name
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"Model {name} not found; available models = {available_models()}"
|
|
|
|
)
|
|
|
|
|
|
|
|
with open(model_path, "rb") as opened_file:
|
|
|
|
try:
|
|
|
|
# loading JIT archive
|
|
|
|
model = torch.jit.load(
|
|
|
|
opened_file, map_location=device if jit else "cpu"
|
|
|
|
).eval()
|
|
|
|
state_dict = None
|
|
|
|
except RuntimeError:
|
|
|
|
# loading saved state dict
|
|
|
|
if jit:
|
|
|
|
warnings.warn(
|
|
|
|
f"File {model_path} is not a JIT archive. Loading as a state dict instead"
|
|
|
|
)
|
|
|
|
jit = False
|
|
|
|
state_dict = torch.load(opened_file, map_location="cpu")
|
|
|
|
|
|
|
|
if not jit:
|
|
|
|
model = build_model(state_dict or model.state_dict()).to(device)
|
|
|
|
if str(device) == "cpu":
|
|
|
|
model.float()
|
|
|
|
return model, _transform(model.visual.input_resolution)
|
|
|
|
|
|
|
|
# patch the device names
|
|
|
|
device_holder = torch.jit.trace(
|
|
|
|
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
|
|
|
|
)
|
|
|
|
device_node = [
|
|
|
|
n
|
|
|
|
for n in device_holder.graph.findAllNodes("prim::Constant")
|
|
|
|
if "Device" in repr(n)
|
|
|
|
][-1]
|
|
|
|
|
|
|
|
def patch_device(module):
|
|
|
|
try:
|
|
|
|
graphs = [module.graph] if hasattr(module, "graph") else []
|
|
|
|
except RuntimeError:
|
|
|
|
graphs = []
|
|
|
|
|
|
|
|
if hasattr(module, "forward1"):
|
|
|
|
graphs.append(module.forward1.graph)
|
|
|
|
|
|
|
|
for graph in graphs:
|
|
|
|
for node in graph.findAllNodes("prim::Constant"):
|
|
|
|
if "value" in node.attributeNames() and str(node["value"]).startswith(
|
|
|
|
"cuda"
|
|
|
|
):
|
|
|
|
node.copyAttributes(device_node)
|
|
|
|
|
|
|
|
model.apply(patch_device)
|
|
|
|
patch_device(model.encode_image)
|
|
|
|
patch_device(model.encode_text)
|
|
|
|
|
|
|
|
# patch dtype to float32 on CPU
|
|
|
|
if str(device) == "cpu":
|
|
|
|
float_holder = torch.jit.trace(
|
|
|
|
lambda: torch.ones([]).float(), example_inputs=[]
|
|
|
|
)
|
|
|
|
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
|
|
|
float_node = float_input.node()
|
|
|
|
|
|
|
|
def patch_float(module):
|
|
|
|
try:
|
|
|
|
graphs = [module.graph] if hasattr(module, "graph") else []
|
|
|
|
except RuntimeError:
|
|
|
|
graphs = []
|
|
|
|
|
|
|
|
if hasattr(module, "forward1"):
|
|
|
|
graphs.append(module.forward1.graph)
|
|
|
|
|
|
|
|
for graph in graphs:
|
|
|
|
for node in graph.findAllNodes("aten::to"):
|
|
|
|
inputs = list(node.inputs())
|
|
|
|
for i in [
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
]: # dtype can be the second or third argument to aten::to()
|
|
|
|
if inputs[i].node()["value"] == 5:
|
|
|
|
inputs[i].node().copyAttributes(float_node)
|
|
|
|
|
|
|
|
model.apply(patch_float)
|
|
|
|
patch_float(model.encode_image)
|
|
|
|
patch_float(model.encode_text)
|
|
|
|
|
|
|
|
model.float()
|
|
|
|
|
|
|
|
return model, _transform(model.input_resolution.item())
|
|
|
|
|
|
|
|
|
|
|
|
def tokenize(
|
|
|
|
texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False
|
|
|
|
) -> Union[torch.IntTensor, torch.LongTensor]:
|
|
|
|
"""
|
2023-01-02 04:14:22 +00:00
|
|
|
Returns the tokenized representation of given input string(s).
|
2022-09-12 05:22:43 +00:00
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
texts : Union[str, List[str]]
|
|
|
|
An input string or a list of input strings to tokenize
|
|
|
|
|
|
|
|
context_length : int
|
|
|
|
The context length to use; all CLIP models use 77 as the context length
|
|
|
|
|
|
|
|
truncate: bool
|
|
|
|
Whether to truncate the text in case its encoding is longer than the context length
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
|
|
|
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
|
|
|
"""
|
|
|
|
if isinstance(texts, str):
|
|
|
|
texts = [texts]
|
|
|
|
|
|
|
|
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
|
|
|
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
|
|
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
|
|
|
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
|
|
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
|
|
|
else:
|
|
|
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
|
|
|
|
|
|
|
for i, tokens in enumerate(all_tokens):
|
|
|
|
if len(tokens) > context_length:
|
|
|
|
if truncate:
|
|
|
|
tokens = tokens[:context_length]
|
|
|
|
tokens[-1] = eot_token
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"Input {texts[i]} is too long for context length {context_length}"
|
|
|
|
)
|
|
|
|
result[i, : len(tokens)] = torch.tensor(tokens)
|
|
|
|
|
|
|
|
return result
|