gpt4all/gpt4all-bindings/typescript/README.md
Jacob Nguyen 4e55940edf
feat(typescript)/dynamic template (#1287) (#1326)
* feat(typescript)/dynamic template (#1287)

* remove packaged yarn

* prompt templates update wip

* prompt template update

* system prompt template, update types, remove embed promises, cleanup

* support both snakecased and camelcased prompt context

* fix #1277 libbert, libfalcon and libreplit libs not being moved into the right folder after build

* added support for modelConfigFile param, allowing the user to specify a local file instead of downloading the remote models.json. added a warning message if code fails to load a model config. included prompt context docs by amogus.

* snakecase warning, put logic for loading local models.json into listModels, added constant for the default remote model list url, test improvements, simpler hasOwnProperty call

* add DEFAULT_PROMPT_CONTEXT, export new constants

* add md5sum testcase and fix constants export

* update types

* throw if attempting to list models without a source

* rebuild docs

* fix download logging undefined url, toFixed typo, pass config filesize in for future progress report

* added overload with union types

* bump to 2.2.0, remove alpha

* code speling

---------

Co-authored-by: Andreas Obersteiner <8959303+iimez@users.noreply.github.com>
2023-08-14 12:45:45 -04:00

24 KiB

GPT4All Node.js API

yarn add gpt4all@alpha

npm install gpt4all@alpha

pnpm install gpt4all@alpha

The original GPT4All typescript bindings are now out of date.

  • New bindings created by jacoobes, limez and the nomic ai community, for all to use.
  • The nodejs api has made strides to mirror the python api. It is not 100% mirrored, but many pieces of the api resemble its python counterpart.
  • Everything should work out the box.
  • See API Reference

Chat Completion

import { createCompletion, loadModel } from '../src/gpt4all.js'

const model = await loadModel('ggml-vicuna-7b-1.1-q4_2', { verbose: true });

const response = await createCompletion(model, [
    { role : 'system', content: 'You are meant to be annoying and unhelpful.'  },
    { role : 'user', content: 'What is 1 + 1?'  } 
]);

Embedding

import { createEmbedding, loadModel } from '../src/gpt4all.js'

const model = await loadModel('ggml-all-MiniLM-L6-v2-f16', { verbose: true });

const fltArray = createEmbedding(model, "Pain is inevitable, suffering optional");

Build Instructions

  • binding.gyp is compile config
  • Tested on Ubuntu. Everything seems to work fine
  • Tested on Windows. Everything works fine.
  • Sparse testing on mac os.
  • MingW works as well to build the gpt4all-backend. HOWEVER, this package works only with MSVC built dlls.

Requirements

  • git
  • node.js >= 18.0.0
  • yarn
  • node-gyp
    • all of its requirements.
  • (unix) gcc version 12
  • (win) msvc version 143
    • Can be obtained with visual studio 2022 build tools
  • python 3

Build (from source)

git clone https://github.com/nomic-ai/gpt4all.git
cd gpt4all-bindings/typescript
  • The below shell commands assume the current working directory is typescript.

  • To Build and Rebuild:

yarn
  • llama.cpp git submodule for gpt4all can be possibly absent. If this is the case, make sure to run in llama.cpp parent directory
git submodule update --init --depth 1 --recursive

AS OF NEW BACKEND to build the backend,

yarn build:backend

This will build platform-dependent dynamic libraries, and will be located in runtimes/(platform)/native The only current way to use them is to put them in the current working directory of your application. That is, WHEREVER YOU RUN YOUR NODE APPLICATION

  • llama-xxxx.dll is required.
  • According to whatever model you are using, you'll need to select the proper model loader.
    • For example, if you running an Mosaic MPT model, you will need to select the mpt-(buildvariant).(dynamiclibrary)

Test

yarn test

Source Overview

src/

  • Extra functions to help aid devex
  • Typings for the native node addon
  • the javascript interface

test/

  • simple unit testings for some functions exported.
  • more advanced ai testing is not handled

spec/

  • Average look and feel of the api
  • Should work assuming a model and libraries are installed locally in working directory

index.cc

  • The bridge between nodejs and c. Where the bindings are.

prompt.cc

  • Handling prompting and inference of models in a threadsafe, asynchronous way.

Known Issues

  • why your model may be spewing bull 💩
    • The downloaded model is broken (just reinstall or download from official site)
    • That's it so far

Roadmap

This package is in active development, and breaking changes may happen until the api stabilizes. Here's what's the todo list:

  • x] prompt models via a threadsafe function in order to have proper non blocking behavior in nodejs
    
  •  ] ~~createTokenStream, an async iterator that streams each token emitted from the model. Planning on following this [example](https://github.com/nodejs/node-addon-examples/tree/main/threadsafe-async-iterator)~~ May not implement unless someone else can complete
    
  • x] proper unit testing (integrate with circle ci)
    
  • x] publish to npm under alpha tag `gpt4all@alpha`
    
  • x] have more people test on other platforms (mac tester needed)
    
  • x] switch to new pluggable backend
    
  •  ] NPM bundle size reduction via optionalDependencies strategy (need help)
    *   Should include prebuilds to avoid painful node-gyp errors
    
  •  ] createChatSession ( the python equivalent to create\_chat\_session )
    
    

API Reference

Table of Contents

ModelType

Type of the model

Type: ("gptj" | "llama" | "mpt" | "replit")

ModelFile

Full list of models available @deprecated These model names are outdated and this type will not be maintained, please use a string literal instead

gptj

List of GPT-J Models

Type: ("ggml-gpt4all-j-v1.3-groovy.bin" | "ggml-gpt4all-j-v1.2-jazzy.bin" | "ggml-gpt4all-j-v1.1-breezy.bin" | "ggml-gpt4all-j.bin")

llama

List Llama Models

Type: ("ggml-gpt4all-l13b-snoozy.bin" | "ggml-vicuna-7b-1.1-q4_2.bin" | "ggml-vicuna-13b-1.1-q4_2.bin" | "ggml-wizardLM-7B.q4_2.bin" | "ggml-stable-vicuna-13B.q4_2.bin" | "ggml-nous-gpt4-vicuna-13b.bin" | "ggml-v3-13b-hermes-q5_1.bin")

mpt

List of MPT Models

Type: ("ggml-mpt-7b-base.bin" | "ggml-mpt-7b-chat.bin" | "ggml-mpt-7b-instruct.bin")

replit

List of Replit Models

Type: "ggml-replit-code-v1-3b.bin"

type

Model architecture. This argument currently does not have any functionality and is just used as descriptive identifier for user.

Type: ModelType

LLModel

LLModel class representing a language model. This is a base class that provides common functionality for different types of language models.

constructor

Initialize a new LLModel.

Parameters
  • path string Absolute path to the model file.
  • Throws Error If the model file does not exist.
type

either 'gpt', mpt', or 'llama' or undefined

Returns (ModelType | undefined)

name

The name of the model.

Returns string

stateSize

Get the size of the internal state of the model. NOTE: This state data is specific to the type of model you have created.

Returns number the size in bytes of the internal state of the model

threadCount

Get the number of threads used for model inference. The default is the number of physical cores your computer has.

Returns number The number of threads used for model inference.

setThreadCount

Set the number of threads used for model inference.

Parameters
  • newNumber number The new number of threads.

Returns void

raw_prompt

Prompt the model with a given input and optional parameters. This is the raw output from model. Use the prompt function exported for a value

Parameters

Returns void The result of the model prompt.

embed

Embed text with the model. Keep in mind that not all models can embed text, (only bert can embed as of 07/16/2023 (mm/dd/yyyy)) Use the prompt function exported for a value

Parameters
  • text string
  • q The prompt input.
  • params Optional parameters for the prompt context.

Returns Float32Array The result of the model prompt.

isModelLoaded

Whether the model is loaded or not.

Returns boolean

setLibraryPath

Where to search for the pluggable backend libraries

Parameters

Returns void

getLibraryPath

Where to get the pluggable backend libraries

Returns string

loadModel

Loads a machine learning model with the specified name. The defacto way to create a model. By default this will download a model from the official GPT4ALL website, if a model is not present at given path.

Parameters
  • modelName string The name of the model to load.
  • options (LoadModelOptions | undefined)? (Optional) Additional options for loading the model.

Returns Promise<(InferenceModel | EmbeddingModel)> A promise that resolves to an instance of the loaded LLModel.

createCompletion

The nodejs equivalent to python binding's chat_completion

Parameters
  • model InferenceModel The language model object.
  • messages Array<PromptMessage> The array of messages for the conversation.
  • options CompletionOptions The options for creating the completion.

Returns CompletionReturn The completion result.

createEmbedding

The nodejs moral equivalent to python binding's Embed4All().embed() meow

Parameters
  • model EmbeddingModel The language model object.
  • text string text to embed

Returns Float32Array The completion result.

CompletionOptions

Extends Partial<LLModelPromptContext>

The options for creating the completion.

verbose

Indicates if verbose logging is enabled.

Type: boolean

systemPromptTemplate

Template for the system message. Will be put before the conversation with %1 being replaced by all system messages. Note that if this is not defined, system messages will not be included in the prompt.

Type: string

promptTemplate

Template for user messages, with %1 being replaced by the message.

Type: boolean

promptHeader

The initial instruction for the model, on top of the prompt

Type: string

promptFooter

The last instruction for the model, appended to the end of the prompt.

Type: string

PromptMessage

A message in the conversation, identical to OpenAI's chat message.

role

The role of the message.

Type: ("system" | "assistant" | "user")

content

The message content.

Type: string

prompt_tokens

The number of tokens used in the prompt.

Type: number

completion_tokens

The number of tokens used in the completion.

Type: number

total_tokens

The total number of tokens used.

Type: number

CompletionReturn

The result of the completion, similar to OpenAI's format.

model

The model used for the completion.

Type: string

usage

Token usage report.

Type: {prompt_tokens: number, completion_tokens: number, total_tokens: number}

choices

The generated completions.

Type: Array<CompletionChoice>

CompletionChoice

A completion choice, similar to OpenAI's format.

message

Response message

Type: PromptMessage

LLModelPromptContext

Model inference arguments for generating completions.

logitsSize

The size of the raw logits vector.

Type: number

tokensSize

The size of the raw tokens vector.

Type: number

nPast

The number of tokens in the past conversation.

Type: number

nCtx

The number of tokens possible in the context window.

Type: number

nPredict

The number of tokens to predict.

Type: number

topK

The top-k logits to sample from. Top-K sampling selects the next token only from the top K most likely tokens predicted by the model. It helps reduce the risk of generating low-probability or nonsensical tokens, but it may also limit the diversity of the output. A higher value for top-K (eg., 100) will consider more tokens and lead to more diverse text, while a lower value (eg., 10) will focus on the most probable tokens and generate more conservative text. 30 - 60 is a good range for most tasks.

Type: number

topP

The nucleus sampling probability threshold. Top-P limits the selection of the next token to a subset of tokens with a cumulative probability above a threshold P. This method, also known as nucleus sampling, finds a balance between diversity and quality by considering both token probabilities and the number of tokens available for sampling. When using a higher value for top-P (eg., 0.95), the generated text becomes more diverse. On the other hand, a lower value (eg., 0.1) produces more focused and conservative text. The default value is 0.4, which is aimed to be the middle ground between focus and diversity, but for more creative tasks a higher top-p value will be beneficial, about 0.5-0.9 is a good range for that.

Type: number

temp

The temperature to adjust the model's output distribution. Temperature is like a knob that adjusts how creative or focused the output becomes. Higher temperatures (eg., 1.2) increase randomness, resulting in more imaginative and diverse text. Lower temperatures (eg., 0.5) make the output more focused, predictable, and conservative. When the temperature is set to 0, the output becomes completely deterministic, always selecting the most probable next token and producing identical results each time. A safe range would be around 0.6 - 0.85, but you are free to search what value fits best for you.

Type: number

nBatch

The number of predictions to generate in parallel. By splitting the prompt every N tokens, prompt-batch-size reduces RAM usage during processing. However, this can increase the processing time as a trade-off. If the N value is set too low (e.g., 10), long prompts with 500+ tokens will be most affected, requiring numerous processing runs to complete the prompt processing. To ensure optimal performance, setting the prompt-batch-size to 2048 allows processing of all tokens in a single run.

Type: number

repeatPenalty

The penalty factor for repeated tokens. Repeat-penalty can help penalize tokens based on how frequently they occur in the text, including the input prompt. A token that has already appeared five times is penalized more heavily than a token that has appeared only one time. A value of 1 means that there is no penalty and values larger than 1 discourage repeated tokens.

Type: number

repeatLastN

The number of last tokens to penalize. The repeat-penalty-tokens N option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens.

Type: number

contextErase

The percentage of context to erase if the context window is exceeded.

Type: number

createTokenStream

TODO: Help wanted to implement this

Parameters

Returns function (ll: LLModel): AsyncGenerator<string>

DEFAULT_DIRECTORY

From python api: models will be stored in (homedir)/.cache/gpt4all/`

Type: string

DEFAULT_LIBRARIES_DIRECTORY

From python api: The default path for dynamic libraries to be stored. You may separate paths by a semicolon to search in multiple areas. This searches DEFAULT_DIRECTORY/libraries, cwd/libraries, and finally cwd.

Type: string

DEFAULT_MODEL_CONFIG

Default model configuration.

Type: ModelConfig

DEFAULT_PROMT_CONTEXT

Default prompt context.

Type: LLModelPromptContext

DEFAULT_MODEL_LIST_URL

Default model list url.

Type: string

downloadModel

Initiates the download of a model file. By default this downloads without waiting. use the controller returned to alter this behavior.

Parameters
  • modelName string The model to be downloaded.
  • options DownloadOptions to pass into the downloader. Default is { location: (cwd), verbose: false }.
Examples
const download = downloadModel('ggml-gpt4all-j-v1.3-groovy.bin')
download.promise.then(() => console.log('Downloaded!'))
  • Throws Error If the model already exists in the specified location.
  • Throws Error If the model cannot be found at the specified url.

Returns DownloadController object that allows controlling the download process.

DownloadModelOptions

Options for the model download process.

modelPath

location to download the model. Default is process.cwd(), or the current working directory

Type: string

verbose

Debug mode -- check how long it took to download in seconds

Type: boolean

url

Remote download url. Defaults to https://gpt4all.io/models/<modelName>

Type: string

md5sum

MD5 sum of the model file. If this is provided, the downloaded file will be checked against this sum. If the sums do not match, an error will be thrown and the file will be deleted.

Type: string

DownloadController

Model download controller.

cancel

Cancel the request to download if this is called.

Type: function (): void

promise

A promise resolving to the downloaded models config once the download is done

Type: Promise<ModelConfig>