gpt4all/README.md
2023-03-28 16:38:17 -04:00

2.7 KiB

GPT4All

Demo, data and code to train an assistant-style large language model on ~440k GPT-3.5-Turbo Generations

📗 Technical Report

gpt4all-lora-demo

Try it yourself

Clone this repository down, go the chat directory and download the CPU quantized gpt4all model.

Place the quantized model in the chat directory and start chatting by running:

  • ./gpt4all-lora-quantized-OSX-m1 on Mac/OSX
  • ./gpt4all-lora-quantized-linux-x86 on Windows/Linux

To compile for custom hardware, see our fork of the Alpaca C++ repo.

Reproducibility

Trained LoRa Weights:

Raw Data:

We are not distributing a LLaMa 7B checkpoint.

You can reproduce our trained model by doing the following:

Setup

Clone the repo

git clone --recurse-submodules git@github.com:nomic-ai/gpt4all.git

git submodule configure && git submodule update

Setup the environment

python -m pip install -r requirements.txt

cd transformers
pip install -e . 

cd ../peft
pip install -e .

Training

accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16  --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config.json train.py --config configs/train/finetune-7b.yaml

Generate

python generate.py --config configs/generate/generate.yaml --prompt "Write a script to reverse a string in Python

If you utilize this reposistory, models or data in a downstream project, please consider citing it with:

@misc{gpt4all,
  author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
  title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}