mirror of
https://github.com/nomic-ai/gpt4all
synced 2024-11-06 09:20:33 +00:00
metal replit (#931)
metal+replit makes replit work with Metal and removes its use of `mem_per_token` in favor of fixed size scratch buffers (closer to llama.cpp)
This commit is contained in:
parent
a9b33c3d10
commit
f71d8efc71
@ -97,6 +97,10 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
|
||||
LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
|
||||
prepare_target(llamamodel-mainline llama-mainline)
|
||||
|
||||
add_library(replit-mainline-${BUILD_VARIANT} SHARED
|
||||
replit.cpp utils.h utils.cpp llmodel_shared.cpp)
|
||||
prepare_target(replit-mainline llama-mainline)
|
||||
|
||||
if (NOT LLAMA_METAL)
|
||||
add_library(llamamodel-230519-${BUILD_VARIANT} SHARED
|
||||
llamamodel.cpp llmodel_shared.cpp)
|
||||
@ -116,10 +120,6 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
|
||||
add_library(mpt-${BUILD_VARIANT} SHARED
|
||||
mpt.cpp utils.h utils.cpp llmodel_shared.cpp)
|
||||
prepare_target(mpt ggml-230511)
|
||||
|
||||
add_library(replit-${BUILD_VARIANT} SHARED
|
||||
replit.cpp utils.h utils.cpp llmodel_shared.cpp)
|
||||
prepare_target(replit ggml-230511)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit 74a6d922f12ccfe16b0c265f43be8978c6f25e98
|
||||
Subproject commit 4458a8eaf443e7fa0e764682d22213fa4fef90c3
|
@ -32,6 +32,9 @@
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <ggml.h>
|
||||
#ifdef GGML_USE_METAL
|
||||
#include <ggml-metal.h>
|
||||
#endif
|
||||
|
||||
/**
|
||||
IMPORTANT: This model backend and convert script were developed for the original Huggingface
|
||||
@ -226,6 +229,15 @@ struct replit_model {
|
||||
struct replit_kv_cache kv_self;
|
||||
|
||||
struct ggml_context * ctx;
|
||||
void * eval_buf;
|
||||
size_t eval_buf_size;
|
||||
void * scr0_buf;
|
||||
size_t scr0_buf_size;
|
||||
void * scr1_buf;
|
||||
size_t scr1_buf_size;
|
||||
#ifdef GGML_USE_METAL
|
||||
struct ggml_metal_context * ctx_metal;
|
||||
#endif
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
@ -304,7 +316,6 @@ bool replit_model_load(const std::string & fname, std::istream &fin, replit_mode
|
||||
case 1: wtype = GGML_TYPE_F16; break;
|
||||
case 2: wtype = GGML_TYPE_Q4_0; break;
|
||||
case 3: wtype = GGML_TYPE_Q4_1; break;
|
||||
case 5: wtype = GGML_TYPE_Q4_2; break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
||||
@ -496,6 +507,32 @@ bool replit_model_load(const std::string & fname, std::istream &fin, replit_mode
|
||||
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
|
||||
}
|
||||
|
||||
model.eval_buf_size = 256u * 1024 * 1024;
|
||||
model.eval_buf = malloc(model.eval_buf_size);
|
||||
model.scr0_buf_size = 256u * 1024 * 1024;
|
||||
model.scr0_buf = malloc(model.scr0_buf_size);
|
||||
model.scr1_buf_size = 256u * 1024 * 1024;
|
||||
model.scr1_buf = malloc(model.scr1_buf_size);
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
model.ctx_metal = ggml_metal_init();
|
||||
void* data_ptr = ggml_get_mem_buffer(model.ctx);
|
||||
size_t data_size = ggml_get_mem_size(model.ctx);
|
||||
|
||||
#define GGML_CHECK_BUF(result) if (!(result)) { \
|
||||
std::cerr << __func__ << ": failed to add buffer" << std::endl; \
|
||||
ggml_free(model.ctx); \
|
||||
return false; \
|
||||
}
|
||||
|
||||
GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "data", data_ptr, data_size));
|
||||
GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "kv", ggml_get_mem_buffer(model.kv_self.ctx),
|
||||
ggml_get_mem_size(model.kv_self.ctx)));
|
||||
GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "eval", model.eval_buf, model.eval_buf_size));
|
||||
GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "scr0", model.scr0_buf, model.scr0_buf_size));
|
||||
GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "scr1", model.scr1_buf, model.scr1_buf_size));
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -533,30 +570,12 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
static size_t buf_size = 256u * 1024 * 1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token * N > buf_size) {
|
||||
const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
|
||||
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
|
||||
// buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
buf = realloc(buf, buf_size);
|
||||
if (buf == nullptr) {
|
||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = buf_size,
|
||||
.mem_buffer = buf,
|
||||
struct ggml_init_params eval_ctx_params = {
|
||||
.mem_size = model.eval_buf_size,
|
||||
.mem_buffer = model.eval_buf,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_context * ctx0 = ggml_init(eval_ctx_params);
|
||||
struct ggml_cgraph gf = {.n_threads = n_threads};
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
@ -565,7 +584,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
|
||||
ggml_set_scratch(ctx0, {0, model.scr0_buf_size, model.scr0_buf, });
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// a = self.ln_1(x)
|
||||
@ -624,7 +643,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
|
||||
|
||||
// Alibi
|
||||
struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head);
|
||||
struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
|
||||
@ -656,6 +675,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
// projection
|
||||
{ cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
|
||||
}
|
||||
ggml_set_scratch(ctx0, {0, model.scr1_buf_size, model.scr1_buf, });
|
||||
|
||||
inpL = ggml_add(ctx0, inpL, cur);
|
||||
|
||||
@ -682,7 +702,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
// x = x + n
|
||||
inpL = ggml_add(ctx0, inpL, cur);
|
||||
}
|
||||
|
||||
ggml_set_scratch(ctx0, {0, model.scr0_buf_size, model.scr0_buf, });
|
||||
// norm
|
||||
{
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
@ -690,6 +710,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_weight, inpL), inpL);
|
||||
}
|
||||
|
||||
ggml_set_scratch(ctx0, {0, 0, nullptr, });
|
||||
// output embedding weight tied to input embedding
|
||||
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
|
||||
|
||||
@ -698,7 +719,22 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
#ifdef GGML_USE_METAL
|
||||
if (N == 1) {
|
||||
// llama.cpp doesn't use metal for batch/prompt processing presently
|
||||
// pending changes to the metal matmul kernel - only use it for generation (N=1)
|
||||
ggml_metal_graph_compute(model.ctx_metal, &gf);
|
||||
ggml_metal_get_tensor(model.ctx_metal, inpL);
|
||||
} else {
|
||||
// We need to sync the GPU KV cache with the CPU KV cache
|
||||
ggml_metal_get_tensor(model.ctx_metal, model.kv_self.k);
|
||||
ggml_metal_get_tensor(model.ctx_metal, model.kv_self.v);
|
||||
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
}
|
||||
#else
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
#endif
|
||||
|
||||
// std::cout << "Qcur" << std::endl;
|
||||
// print_tensor(Qcur);
|
||||
@ -882,6 +918,19 @@ int32_t Replit::threadCount() const
|
||||
|
||||
Replit::~Replit()
|
||||
{
|
||||
if(d_ptr->model->ctx) {
|
||||
ggml_free(d_ptr->model->ctx);
|
||||
d_ptr->model->ctx = nullptr;
|
||||
}
|
||||
if(d_ptr->model->eval_buf) {
|
||||
free(d_ptr->model->eval_buf);
|
||||
}
|
||||
if(d_ptr->model->scr0_buf) {
|
||||
free(d_ptr->model->scr0_buf);
|
||||
}
|
||||
if(d_ptr->model->scr1_buf) {
|
||||
free(d_ptr->model->scr1_buf);
|
||||
}
|
||||
delete d_ptr->model;
|
||||
}
|
||||
|
||||
@ -965,7 +1014,28 @@ DLL_EXPORT const char *get_build_variant() {
|
||||
DLL_EXPORT bool magic_match(std::istream& f) {
|
||||
uint32_t magic = 0;
|
||||
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
|
||||
return magic == 0x7265706c;
|
||||
if (magic != 0x7265706c) return false;
|
||||
#ifdef GGML_USE_METAL
|
||||
off_t offset = sizeof(uint32_t) * 5; // n_vocab, n_ctx, n_embd, n_head, n_layer
|
||||
f.seekg(offset, std::ios_base::cur);
|
||||
uint32_t ftype;
|
||||
f.read(reinterpret_cast<char*>(&ftype), sizeof(ftype)); // ftype
|
||||
const int32_t qntvr = ftype / GGML_QNT_VERSION_FACTOR;
|
||||
ftype %= GGML_QNT_VERSION_FACTOR;
|
||||
switch (ftype) {
|
||||
case 1: return true; // GGML_TYPE_F16
|
||||
case 2: // GGML_TYPE_Q4_0
|
||||
if (qntvr != GGML_QNT_VERSION)
|
||||
{
|
||||
std::cerr << "replit: not using metal (unsupported qnt ver)" << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
default: return false;
|
||||
}
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
DLL_EXPORT LLModel *construct() {
|
||||
|
Loading…
Reference in New Issue
Block a user