diff --git a/gpt4all-backend/CMakeLists.txt b/gpt4all-backend/CMakeLists.txt index cb1e2675..b0f956ef 100644 --- a/gpt4all-backend/CMakeLists.txt +++ b/gpt4all-backend/CMakeLists.txt @@ -97,6 +97,10 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS) LLAMA_VERSIONS=>=3 LLAMA_DATE=999999) prepare_target(llamamodel-mainline llama-mainline) + add_library(replit-mainline-${BUILD_VARIANT} SHARED + replit.cpp utils.h utils.cpp llmodel_shared.cpp) + prepare_target(replit-mainline llama-mainline) + if (NOT LLAMA_METAL) add_library(llamamodel-230519-${BUILD_VARIANT} SHARED llamamodel.cpp llmodel_shared.cpp) @@ -116,10 +120,6 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS) add_library(mpt-${BUILD_VARIANT} SHARED mpt.cpp utils.h utils.cpp llmodel_shared.cpp) prepare_target(mpt ggml-230511) - - add_library(replit-${BUILD_VARIANT} SHARED - replit.cpp utils.h utils.cpp llmodel_shared.cpp) - prepare_target(replit ggml-230511) endif() endforeach() diff --git a/gpt4all-backend/llama.cpp-mainline b/gpt4all-backend/llama.cpp-mainline index 74a6d922..4458a8ea 160000 --- a/gpt4all-backend/llama.cpp-mainline +++ b/gpt4all-backend/llama.cpp-mainline @@ -1 +1 @@ -Subproject commit 74a6d922f12ccfe16b0c265f43be8978c6f25e98 +Subproject commit 4458a8eaf443e7fa0e764682d22213fa4fef90c3 diff --git a/gpt4all-backend/replit.cpp b/gpt4all-backend/replit.cpp index b978aff3..ef09af6c 100644 --- a/gpt4all-backend/replit.cpp +++ b/gpt4all-backend/replit.cpp @@ -32,6 +32,9 @@ #include #include #include +#ifdef GGML_USE_METAL +#include +#endif /** IMPORTANT: This model backend and convert script were developed for the original Huggingface @@ -226,6 +229,15 @@ struct replit_model { struct replit_kv_cache kv_self; struct ggml_context * ctx; + void * eval_buf; + size_t eval_buf_size; + void * scr0_buf; + size_t scr0_buf_size; + void * scr1_buf; + size_t scr1_buf_size; + #ifdef GGML_USE_METAL + struct ggml_metal_context * ctx_metal; + #endif std::map tensors; }; @@ -304,7 +316,6 @@ bool replit_model_load(const std::string & fname, std::istream &fin, replit_mode case 1: wtype = GGML_TYPE_F16; break; case 2: wtype = GGML_TYPE_Q4_0; break; case 3: wtype = GGML_TYPE_Q4_1; break; - case 5: wtype = GGML_TYPE_Q4_2; break; default: { fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", @@ -496,6 +507,32 @@ bool replit_model_load(const std::string & fname, std::istream &fin, replit_mode printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); } + model.eval_buf_size = 256u * 1024 * 1024; + model.eval_buf = malloc(model.eval_buf_size); + model.scr0_buf_size = 256u * 1024 * 1024; + model.scr0_buf = malloc(model.scr0_buf_size); + model.scr1_buf_size = 256u * 1024 * 1024; + model.scr1_buf = malloc(model.scr1_buf_size); + +#ifdef GGML_USE_METAL + model.ctx_metal = ggml_metal_init(); + void* data_ptr = ggml_get_mem_buffer(model.ctx); + size_t data_size = ggml_get_mem_size(model.ctx); + + #define GGML_CHECK_BUF(result) if (!(result)) { \ + std::cerr << __func__ << ": failed to add buffer" << std::endl; \ + ggml_free(model.ctx); \ + return false; \ + } + + GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "data", data_ptr, data_size)); + GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "kv", ggml_get_mem_buffer(model.kv_self.ctx), + ggml_get_mem_size(model.kv_self.ctx))); + GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "eval", model.eval_buf, model.eval_buf_size)); + GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "scr0", model.scr0_buf, model.scr0_buf_size)); + GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "scr1", model.scr1_buf, model.scr1_buf_size)); +#endif + return true; } @@ -533,30 +570,12 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; - static size_t buf_size = 256u * 1024 * 1024; - static void * buf = malloc(buf_size); - - if (mem_per_token > 0 && mem_per_token * N > buf_size) { - const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead - // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, - // buf_size, buf_size_new); - - // reallocate - buf_size = buf_size_new; - buf = realloc(buf, buf_size); - if (buf == nullptr) { - fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); - return false; - } - } - - struct ggml_init_params params = { - .mem_size = buf_size, - .mem_buffer = buf, + struct ggml_init_params eval_ctx_params = { + .mem_size = model.eval_buf_size, + .mem_buffer = model.eval_buf, .no_alloc = false, }; - - struct ggml_context * ctx0 = ggml_init(params); + struct ggml_context * ctx0 = ggml_init(eval_ctx_params); struct ggml_cgraph gf = {.n_threads = n_threads}; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); @@ -565,7 +584,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd); for (int il = 0; il < n_layer; ++il) { - + ggml_set_scratch(ctx0, {0, model.scr0_buf_size, model.scr0_buf, }); struct ggml_tensor * cur; // a = self.ln_1(x) @@ -624,7 +643,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); // Alibi - struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head); + struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); @@ -656,6 +675,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa // projection { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); } } + ggml_set_scratch(ctx0, {0, model.scr1_buf_size, model.scr1_buf, }); inpL = ggml_add(ctx0, inpL, cur); @@ -682,7 +702,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa // x = x + n inpL = ggml_add(ctx0, inpL, cur); } - + ggml_set_scratch(ctx0, {0, model.scr0_buf_size, model.scr0_buf, }); // norm { inpL = ggml_norm(ctx0, inpL); @@ -690,6 +710,7 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_weight, inpL), inpL); } + ggml_set_scratch(ctx0, {0, 0, nullptr, }); // output embedding weight tied to input embedding inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); @@ -698,7 +719,22 @@ bool replit_eval(const replit_model & model, const int n_threads, const int n_pa // run the computation ggml_build_forward_expand(&gf, inpL); +#ifdef GGML_USE_METAL + if (N == 1) { + // llama.cpp doesn't use metal for batch/prompt processing presently + // pending changes to the metal matmul kernel - only use it for generation (N=1) + ggml_metal_graph_compute(model.ctx_metal, &gf); + ggml_metal_get_tensor(model.ctx_metal, inpL); + } else { + // We need to sync the GPU KV cache with the CPU KV cache + ggml_metal_get_tensor(model.ctx_metal, model.kv_self.k); + ggml_metal_get_tensor(model.ctx_metal, model.kv_self.v); + + ggml_graph_compute(ctx0, &gf); + } +#else ggml_graph_compute(ctx0, &gf); +#endif // std::cout << "Qcur" << std::endl; // print_tensor(Qcur); @@ -882,6 +918,19 @@ int32_t Replit::threadCount() const Replit::~Replit() { + if(d_ptr->model->ctx) { + ggml_free(d_ptr->model->ctx); + d_ptr->model->ctx = nullptr; + } + if(d_ptr->model->eval_buf) { + free(d_ptr->model->eval_buf); + } + if(d_ptr->model->scr0_buf) { + free(d_ptr->model->scr0_buf); + } + if(d_ptr->model->scr1_buf) { + free(d_ptr->model->scr1_buf); + } delete d_ptr->model; } @@ -965,7 +1014,28 @@ DLL_EXPORT const char *get_build_variant() { DLL_EXPORT bool magic_match(std::istream& f) { uint32_t magic = 0; f.read(reinterpret_cast(&magic), sizeof(magic)); - return magic == 0x7265706c; + if (magic != 0x7265706c) return false; + #ifdef GGML_USE_METAL + off_t offset = sizeof(uint32_t) * 5; // n_vocab, n_ctx, n_embd, n_head, n_layer + f.seekg(offset, std::ios_base::cur); + uint32_t ftype; + f.read(reinterpret_cast(&ftype), sizeof(ftype)); // ftype + const int32_t qntvr = ftype / GGML_QNT_VERSION_FACTOR; + ftype %= GGML_QNT_VERSION_FACTOR; + switch (ftype) { + case 1: return true; // GGML_TYPE_F16 + case 2: // GGML_TYPE_Q4_0 + if (qntvr != GGML_QNT_VERSION) + { + std::cerr << "replit: not using metal (unsupported qnt ver)" << std::endl; + return false; + } + return true; + default: return false; + } + #else + return true; + #endif } DLL_EXPORT LLModel *construct() {