Prompt-Engineering-Guide/pages/introduction/tips.zh.mdx
2023-03-30 19:14:59 -06:00

105 lines
5.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 设计提示的通用技巧
以下是设计提示时需要记住的一些技巧:
### 从简单开始
在设计提示时需要记住这是一个迭代的过程需要大量的实验来获得最佳结果。使用像OpenAI或Cohere这样的简单平台是一个很好的起点。
您可以从简单的提示开始,随着您的目标是获得更好的结果,不断添加更多的元素和上下文。在此过程中对您的提示进行版本控制是至关重要的。当您阅读本指南时,您会看到许多例子,其中具体性、简洁性和简明性通常会给您带来更好的结果。
当您有一个涉及许多不同子任务的大任务时,您可以尝试将任务分解为更简单的子任务,并随着获得更好的结果而不断构建。这避免了在提示设计过程中一开始就添加过多的复杂性。
### 指令
您可以使用命令来指示模型执行各种简单任务,例如“写入”、“分类”、“总结”、“翻译”、“排序”等,从而为各种简单任务设计有效的提示。
请记住,您还需要进行大量的实验,以查看哪种方法最有效。尝试使用不同的关键字、上下文和数据尝试不同的指令,看看哪种方法最适合您的特定用例和任务。通常情况下,上下文与您要执行的任务越具体和相关,效果越好。我们将在即将推出的指南中介绍采样和添加更多上下文的重要性。
其他人建议将指令放在提示的开头。建议使用一些清晰的分隔符,如“###”,来分隔指令和上下文。
例如:
*提示:*
```
### 指令 ###
将以下文本翻译成西班牙语:
文本“hello
```
*输出:*
```
¡Hola!
```
### 具体性
对您希望模型执行的指令和任务非常具体。提示越具体和详细,结果就越好。当您有所期望的结果或生成样式时,这一点尤为重要。没有特定的令牌或关键字会导致更好的结果。更重要的是具有良好的格式和描述性提示。实际上,在提示中提供示例非常有效,可以以特定格式获得所需的输出。
在设计提示时,您还应考虑提示的长度,因为提示的长度有限制。考虑到您应该具体和详细的程度是需要考虑的。包含太多不必要的细节并不一定是一个好方法。这些细节应该是相关的,并有助于完成手头的任务。这是您需要进行大量实验的事情。我们鼓励大量实验和迭代,以优化您的应用程序的提示。
例如,让我们尝试从一段文本中提取特定信息的简单提示。
*提示:*
```
提取以下文本中的地名。
所需格式:
地点:<逗号分隔的公司名称列表>
输入“虽然这些发展对研究人员来说是令人鼓舞的但仍有许多谜团。里斯本未知的香帕利莫德中心的神经免疫学家Henrique Veiga-Fernandes说“我们经常在大脑和我们在周围看到的效果之间有一个黑匣子。”“如果我们想在治疗背景下使用它我们实际上需要了解机制。””
```
*输出:*
```
地点:里斯本未知的香帕利莫德中心
```
输入文本来自[这篇Nature文章](https://www.nature.com/articles/d41586-023-00509-z)。
### 避免不精确
在上面关于详细和格式改进的提示中,很容易陷入想要过于聪明的提示陷阱,从而可能创建不精确的描述。通常最好是具体和直接。这里的类比非常类似于有效的沟通——越直接,信息传递就越有效。
例如,您可能有兴趣了解提示工程的概念。您可以尝试这样做:
```
解释提示工程的概念。保持解释简短,只有几句话,不要过于描述。
```
从上面的提示中不清楚要使用多少句话和什么样的风格。您可能仍然可以通过上面的提示获得良好的响应,但更好的提示是非常具体、简洁和直接的。例如:
```
使用2-3句话向高中学生解释提示工程的概念。
```
### 做还是不做?
设计提示时的另一个常见技巧是避免说不要做什么,而是说要做什么。这鼓励更具体化,并关注导致模型产生良好响应的细节。
以下是一个电影推荐聊天机器人的示例,因为我写的指令——关注于不要做什么,而失败了。
*提示:*
```
以下是向客户推荐电影的代理程序。不要询问兴趣。不要询问个人信息。
客户:请根据我的兴趣推荐电影。
代理:
```
*输出:*
```
当然,我可以根据您的兴趣推荐电影。您想看什么类型的电影?您喜欢动作片、喜剧片、爱情片还是其他类型的电影?
```
以下是更好的提示:
*提示:*
```
以下是向客户推荐电影的代理程序。代理负责从全球热门电影中推荐电影。它应该避免询问用户的偏好并避免询问个人信息。如果代理没有电影推荐,它应该回答“抱歉,今天找不到电影推荐。”。
```顾客:请根据我的兴趣推荐一部电影。
客服:
```
*输出:*
```
抱歉,我没有关于您兴趣的任何信息。不过,这是目前全球热门的电影列表:[电影列表]。希望您能找到喜欢的电影!
```
上述示例中的一些内容摘自["Best practices for prompt engineering with OpenAI API" article.](https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api)