OpenTTD-patches/npf.c
matthijs 3081316c69 (svn r2281) - Fix: [ 1115204 ] [NPF] When pressing the goto depot button, trains will now also look behind it if there is no depot in front. If so, the train reverses immediately. This also work anywhere, not just at stations.
- Add: [NPF] Reversing inside of depots now has a penalty. It also applies to trains only, other vehicles shouldn't bother reversing.
- Fix: [NPF] When checking whether to reverse a train, the trackdir of the first loc was used instead of the last vehicle as a starting node for pathfindig.
	This might have caused some trains not reversing when they should have (or vice versa). Typo introduced when converting to GetVehicleTrackdir() in r2256.
- CodeChange: [NPF] Removed duplicate code by letting NPFRouteTjoStationOrTile() call NPFRouteToStationOrTileTwoWay().
- Add: [NPF] NPFRouteToDepotBreadthFirstTwoWay() to find a depot while also looking backwards.
- Add: It is now possibly to specify a path cost for aystar starting nodes.
2005-05-07 22:00:36 +00:00

944 lines
33 KiB
C

#include "stdafx.h"
#include "ttd.h"
#include "debug.h"
#include "npf.h"
#include "aystar.h"
#include "macros.h"
#include "pathfind.h"
#include "station.h"
#include "tile.h"
#include "depot.h"
AyStar _train_find_station;
AyStar _train_find_depot;
AyStar _road_find_station;
AyStar _road_find_depot;
AyStar _npf_aystar;
/* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction along with the trackdir */
const byte _signal_along_trackdir[14] = {
0x80, 0x80, 0x80, 0x20, 0x40, 0x10, 0, 0,
0x40, 0x40, 0x40, 0x10, 0x80, 0x20
};
/* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction against the trackdir */
const byte _signal_against_trackdir[14] = {
0x40, 0x40, 0x40, 0x10, 0x80, 0x20, 0, 0,
0x80, 0x80, 0x80, 0x20, 0x40, 0x10
};
/* Maps a trackdir to the trackdirs that can be reached from it (ie, when
* entering the next tile */
const uint16 _trackdir_reaches_trackdirs[14] = {
0x1009, 0x0016, 0x1009, 0x0016, 0x0520, 0x0016, 0, 0,
0x0520, 0x2A00, 0x2A00, 0x0520, 0x2A00, 0x1009
};
const uint16 _next_trackdir[14] = {
0, 1, 3, 2, 5, 4, 0, 0,
8, 9, 11, 10, 13, 12
};
/* Maps a trackdir to all trackdirs that make 90 deg turns with it. */
const uint16 _trackdir_crosses_trackdirs[14] = {
0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C, 0, 0,
0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C
};
/* Maps a track to all tracks that make 90 deg turns with it. */
const byte _track_crosses_tracks[6] = {
0x2, /* Track 1 -> Track 2 */
0x1, /* Track 2 -> Track 1 */
0x30, /* Upper -> Left | Right */
0x30, /* Lower -> Left | Right */
0x0C, /* Left -> Upper | Lower */
0x0C, /* Right -> Upper | Lower */
};
/* Maps a trackdir to the (4-way) direction the tile is exited when following
* that trackdir */
const byte _trackdir_to_exitdir[14] = {
0,1,0,1,2,1, 0,0,
2,3,3,2,3,0,
};
const byte _track_exitdir_to_trackdir[6][4] = {
{0, 0xff, 8, 0xff},
{0xff, 1, 0xff, 9},
{2, 0xff, 0xff, 10},
{0xff, 3, 11, 0xf},
{0xff, 0xff, 4, 12},
{13, 5, 0xff, 0xff}
};
const byte _track_direction_to_trackdir[6][8] = {
{0xff, 0, 0xff, 0xff, 0xff, 8, 0xff, 0xff},
{0xff, 0xff, 0xff, 1, 0xff, 0xff, 0xff, 9},
{0xff, 0xff, 2, 0xff, 0xff, 0xff, 10, 0xff},
{0xff, 0xff, 3, 0xff, 0xff, 0xff, 11, 0xff},
{12, 0xff, 0xff, 0xff, 4, 0xff, 0xff, 0xff},
{13, 0xff, 0xff, 0xff, 5, 0xff, 0xff, 0xff}
};
const byte _dir_to_diag_trackdir[4] = {
0, 1, 8, 9,
};
const byte _reverse_dir[4] = {
2, 3, 0, 1
};
const byte _reverse_trackdir[14] = {
8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5
};
/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
* the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
*/
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH)
static const uint _trackdir_length[14] = {
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
0, 0,
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};
uint NTPHash(uint key1, uint key2)
{
/* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */
return PATHFIND_HASH_TILE(key1);
}
uint NPFHash(uint key1, uint key2)
{
/* TODO: think of a better hash? */
uint part1 = TileX(key1) & NPF_HASH_HALFMASK;
uint part2 = TileY(key1) & NPF_HASH_HALFMASK;
/* The value of 14 below is based on the maximum value of key2 (13) */
return ((((part1 << NPF_HASH_HALFBITS) | part2)) + (NPF_HASH_SIZE * key2 / 14)) % NPF_HASH_SIZE;
}
int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) {
return 0;
}
/* Calcs the tile of given station that is closest to a given tile
* for this we assume the station is a rectangle,
* as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
*/
TileIndex CalcClosestStationTile(int station, TileIndex tile) {
const Station* st = GetStation(station);
int x1,x2,x3,tx;
int y1,y2,y3,ty;
x1 = TileX(st->train_tile); y1 = TileY(st->train_tile); // topmost corner of station
x2 = x1 + st->trainst_w - 1; y2 = y1 + st->trainst_h - 1; // lowermost corner of station
x3 = TileX(tile); y3 = TileY(tile); // tile we take the distance from
// we are going the aim for the x coordinate of the closest corner
// but if we are between those coordinates, we will aim for our own x coordinate
if (x3 < x1)
tx = x1;
else if (x3 > x2)
tx = x2;
else
tx = x3;
// same for y coordinate, see above comment
if (y3 < y1)
ty = y1;
else if (y3 > y2)
ty = y2;
else
ty = y3;
// return the tile of our target coordinates
return TILE_XY(tx,ty);
};
/* Calcs the heuristic to the target station or tile. For train stations, it
* takes into account the direction of approach.
*/
int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
TileIndex from = current->tile;
TileIndex to = fstd->dest_coords;
uint dist;
// for train-stations, we are going to aim for the closest station tile
if ((as->user_data[NPF_TYPE] == TRANSPORT_RAIL) && (fstd->station_index != -1))
to = CalcClosestStationTile(fstd->station_index, from);
if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD)
/* Since roads only have diagonal pieces, we use manhattan distance here */
dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
else
/* Ships and trains can also go diagonal, so the minimum distance is shorter */
dist = DistanceTrack(from, to) * NPF_TILE_LENGTH;
if (dist < ftd->best_bird_dist) {
ftd->best_bird_dist = dist;
ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
}
DEBUG(npf, 4)("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
return dist;
}
/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
* get here, either getting it from the current choice or from the parent's
* choice */
void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
{
if (parent->path.parent == NULL) {
byte trackdir = current->direction;
/* This is a first order decision, so we'd better save the
* direction we chose */
current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
DEBUG(npf, 6)("Saving trackdir: %#x", trackdir);
} else {
/* We've already made the decision, so just save our parent's
* decision */
current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
}
}
/* Will return the cost of the tunnel. If it is an entry, it will return the
* cost of that tile. If the tile is an exit, it will return the tunnel length
* including the exit tile. Requires that this is a Tunnel tile */
uint NPFTunnelCost(AyStarNode* current) {
byte exitdir = _trackdir_to_exitdir[current->direction];
TileIndex tile = current->tile;
if ( (uint)(_map5[tile] & 3) == _reverse_dir[exitdir]) {
/* We just popped out if this tunnel, since were
* facing the tunnel exit */
FindLengthOfTunnelResult flotr;
flotr = FindLengthOfTunnel(tile, _reverse_dir[exitdir]);
return flotr.length * NPF_TILE_LENGTH;
//TODO: Penalty for tunnels?
} else {
/* We are entering the tunnel, the enter tile is just a
* straight track */
return NPF_TILE_LENGTH;
}
}
uint NPFSlopeCost(AyStarNode* current) {
TileIndex next = current->tile + TileOffsByDir(_trackdir_to_exitdir[current->direction]);
int x,y;
int8 z1,z2;
x = TileX(current->tile) * 16;
y = TileY(current->tile) * 16;
z1 = GetSlopeZ(x+8, y+8);
x = TileX(next) * 16;
y = TileY(next) * 16;
z2 = GetSlopeZ(x+8, y+8);
if ((z2 - z1) > 1) {
/* Slope up */
return _patches.npf_rail_slope_penalty;
}
return 0;
/* Should we give a bonus for slope down? Probably not, we
* could just substract that bonus from the penalty, because
* there is only one level of steepness... */
}
/* Mark tiles by mowing the grass when npf debug level >= 1 */
void NPFMarkTile(TileIndex tile) {
#ifdef NO_DEBUG_MESSAGES
return;
#else
if (_debug_npf_level >= 1)
switch(GetTileType(tile)) {
case MP_RAILWAY:
/* DEBUG: mark visited tiles by mowing the grass under them
* ;-) */
if (!IsTileDepotType(tile, TRANSPORT_RAIL)) {
_map2[tile] &= ~15; /* Clear bits 0-3 */
MarkTileDirtyByTile(tile);
}
break;
case MP_STREET:
if (!IsTileDepotType(tile, TRANSPORT_ROAD)) {
_map3_hi[tile] &= ~0x70; /* Clear bits 4-6 */
MarkTileDirtyByTile(tile);
}
break;
default:
break;
}
#endif
}
int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
//TileIndex tile = current->tile;
int32 cost = 0;
byte trackdir = current->direction;
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(current->direction))
cost += _patches.npf_buoy_penalty; /* A small penalty for going over buoys */
if (current->direction != _next_trackdir[parent->path.node.direction])
cost += _patches.npf_water_curve_penalty;
/* TODO More penalties? */
return cost;
}
/* Determine the cost of this node, for road tracks */
int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
TileIndex tile = current->tile;
int32 cost = 0;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if ((_map5[tile] & 0xF0)==0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_STREET:
cost = NPF_TILE_LENGTH;
break;
default:
break;
}
/* Determine extra costs */
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
//TODO
NPFMarkTile(tile);
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Determine the cost of this node, for railway tracks */
int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
TileIndex tile = current->tile;
byte trackdir = current->direction;
int32 cost = 0;
/* HACK: We create a OpenListNode manualy, so we can call EndNodeCheck */
OpenListNode new_node;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if ((_map5[tile] & 0xF0)==0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_RAILWAY:
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
break;
case MP_STREET: /* Railway crossing */
cost = NPF_TILE_LENGTH;
break;
case MP_STATION:
/* We give a station tile a penalty. Logically we would only
* want to give station tiles that are not our destination
* this penalty. This would discourage trains to drive through
* busy stations. But, we can just give any station tile a
* penalty, because every possible route will get this penalty
* exactly once, on its end tile (if it's a station) and it
* will therefore not make a difference. */
cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
break;
default:
break;
}
/* Determine extra costs */
/* Check for signals */
if (IsTileType(tile, MP_RAILWAY) && (_map5[tile] & 0xC0) == 0x40 && (_map3_lo[tile] & _signal_along_trackdir[trackdir]) != 0) {
/* Ordinary track with signals */
if ((_map2[tile] & _signal_along_trackdir[trackdir]) == 0) {
/* Signal facing us is red */
if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
/* Penalize the first signal we
* encounter, if it is red */
/* Is this a presignal exit or combo? */
if ((_map3_hi[tile] & 0x3) == 0x2 || (_map3_hi[tile] & 0x3) == 0x3)
/* Penalise exit and combo signals differently (heavier) */
cost += _patches.npf_rail_firstred_exit_penalty;
else
cost += _patches.npf_rail_firstred_penalty;
}
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
} else {
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
}
NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
}
/* Penalise the tile if it is a target tile and the last signal was
* red */
new_node.path.node = *current;
if (as->EndNodeCheck(as, &new_node)==AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
cost += _patches.npf_rail_lastred_penalty;
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
if (current->direction != _next_trackdir[parent->path.node.direction])
cost += _patches.npf_rail_curve_penalty;
//TODO, with realistic acceleration, also the amount of straight track between
// curves should be taken into account, as this affects the speed limit.
/* Check for reverse in depot */
if (IsTileDepotType(tile, TRANSPORT_RAIL) && !as->EndNodeCheck(as, &new_node)==AYSTAR_FOUND_END_NODE)
/* Penalise any depot tile that is not the last tile in the path. This
* _should_ penalise every occurence of reversing in a depot (and only
* that) */
cost += _patches.npf_rail_depot_reverse_penalty;
/* Check for occupied track */
//TODO
NPFMarkTile(tile);
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Will find any depot */
int32 NPFFindDepot(AyStar* as, OpenListNode *current) {
TileIndex tile = current->path.node.tile;
/* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below,
* since checking the cache not that much faster than the actual check */
if (IsTileDepotType(tile, as->user_data[NPF_TYPE]))
return AYSTAR_FOUND_END_NODE;
else
return AYSTAR_DONE;
}
/* Will find a station identified using the NPFFindStationOrTileData */
int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
AyStarNode *node = &current->path.node;
TileIndex tile = node->tile;
/* See if we checked this before */
if (NPFGetFlag(node, NPF_FLAG_TARGET_CHECKED))
return NPFGetFlag(node, NPF_FLAG_IS_TARGET);
/* We're gonna check this now and store the result, let's mark that */
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
/* If GetNeighbours said we could get here, we assume the station type
* is correct */
if (
(fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */
(IsTileType(tile, MP_STATION) && _map2[tile] == fstd->station_index) /* the station */
) {
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
return AYSTAR_FOUND_END_NODE;
} else {
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, false);
return AYSTAR_DONE;
}
}
/* To be called when current contains the (shortest route to) the target node.
* Will fill the contents of the NPFFoundTargetData using
* AyStarNode[NPF_TRACKDIR_CHOICE].
*/
void NPFSaveTargetData(AyStar* as, OpenListNode* current) {
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
ftd->best_trackdir = current->path.node.user_data[NPF_TRACKDIR_CHOICE];
ftd->best_path_dist = current->g;
ftd->best_bird_dist = 0;
ftd->node = current->path.node;
}
/**
* Return the rail type of tile, or INVALID_RAILTYPE if this is no rail tile.
* Note that there is no check if the given trackdir is actually present on
* the tile!
* The given trackdir is used when there are (could be) multiple rail types on
* one tile.
*/
static inline RailType GetTileRailType(TileIndex tile, byte trackdir)
{
byte type = INVALID_RAILTYPE;
switch (GetTileType(tile)) {
case MP_RAILWAY:
/* railway track */
type = _map3_lo[tile] & RAILTYPE_MASK;
break;
case MP_STREET:
/* rail/road crossing */
if ((_map5[tile] & 0xF0) == 0x10)
type = _map3_hi[tile] & RAILTYPE_MASK;
break;
case MP_STATION:
if (IsTrainStationTile(tile))
type = _map3_lo[tile] & RAILTYPE_MASK;
break;
case MP_TUNNELBRIDGE:
/* railway tunnel */
if ((_map5[tile] & 0xFC) == 0) type = _map3_lo[tile] & RAILTYPE_MASK;
/* railway bridge ending */
if ((_map5[tile] & 0xC6) == 0x80) type = _map3_lo[tile] & RAILTYPE_MASK;
/* on railway bridge */
if ((_map5[tile] & 0xC6) == 0xC0 && (_map5[tile] & 0x1) == (_trackdir_to_exitdir[trackdir] & 0x1))
type = (_map3_lo[tile] >> 4) & RAILTYPE_MASK;
/* under bridge (any type) */
if ((_map5[tile] & 0xC0) == 0xC0 && (_map5[tile] & 0x1) != (trackdir & 0x1))
type = _map3_lo[tile] & RAILTYPE_MASK;
break;
default:
break;
}
return type;
}
/* Will just follow the results of GetTileTrackStatus concerning where we can
* go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
* an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
* entry and exit are neighbours. Will fill
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
* copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
void NPFFollowTrack(AyStar* aystar, OpenListNode* current) {
byte src_trackdir = current->path.node.direction;
TileIndex src_tile = current->path.node.tile;
byte src_exitdir = _trackdir_to_exitdir[src_trackdir];
FindLengthOfTunnelResult flotr;
TileIndex dst_tile;
int i = 0;
uint trackdirs, ts;
TransportType type = aystar->user_data[NPF_TYPE];
/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
aystar->num_neighbours = 0;
DEBUG(npf, 4)("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
/* Find dest tile */
if (IsTileType(src_tile, MP_TUNNELBRIDGE) && (_map5[src_tile] & 0xF0)==0 && (_map5[src_tile] & 3) == src_exitdir) {
/* This is a tunnel. We know this tunnel is our type,
* otherwise we wouldn't have got here. It is also facing us,
* so we should skip it's body */
flotr = FindLengthOfTunnel(src_tile, src_exitdir);
dst_tile = flotr.tile;
} else {
if (type != TRANSPORT_WATER && (IsRoadStationTile(src_tile) || IsTileDepotType(src_tile, type))){
/* This is a road station or a train or road depot. We can enter and exit
* those from one side only. Trackdirs don't support that (yet), so we'll
* do this here. */
byte exitdir;
/* Find out the exit direction first */
if (IsRoadStationTile(src_tile))
exitdir = GetRoadStationDir(src_tile);
else /* Train or road depot. Direction is stored the same for both, in map5 */
exitdir = GetDepotDirection(src_tile, type);
/* Let's see if were headed the right way into the depot, and reverse
* otherwise (only for trains, since only with trains you can
* (sometimes) reach tiles after reversing that you couldn't reach
* without reversing. */
if (src_trackdir == _dir_to_diag_trackdir[_reverse_dir[exitdir]] && type == TRANSPORT_RAIL)
/* We are headed inwards. We can only reverse here, so we'll not
* consider this direction, but jump ahead to the reverse direction.
* It would be nicer to return one neighbour here (the reverse
* trackdir of the one we are considering now) and then considering
* that one to return the tracks outside of the depot. But, because
* the code layout is cleaner this way, we will just pretend we are
* reversed already */
src_trackdir = _reverse_trackdir[src_trackdir];
}
/* This a normal tile, a bridge, a tunnel exit, etc. */
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(_trackdir_to_exitdir[src_trackdir]));
if (dst_tile == INVALID_TILE) {
/* We reached the border of the map */
/* TODO Nicer control flow for this */
return;
}
}
/* check correct rail type (mono, maglev, etc)
* XXX: This now compares with the previous tile, which should not pose a
* problem, but it might be nicer to compare with the first tile, or even
* the type of the vehicle... Maybe an NPF_RAILTYPE userdata sometime? */
if (type == TRANSPORT_RAIL) {
byte src_type = GetTileRailType(src_tile, src_trackdir);
byte dst_type = GetTileRailType(dst_tile, _trackdir_to_exitdir[src_trackdir]);
if (src_type != dst_type) {
return;
}
}
/* Check the owner of the tile */
if (
IsTileType(dst_tile, MP_RAILWAY) /* Rail tile (also rail depot) */
|| IsTrainStationTile(dst_tile) /* Rail station tile */
|| IsTileDepotType(dst_tile, TRANSPORT_ROAD) /* Road depot tile */
|| IsRoadStationTile(dst_tile) /* Road station tile */
|| IsTileDepotType(dst_tile, TRANSPORT_WATER) /* Water depot tile */
) /* TODO: Crossings, tunnels and bridges are "public" now */
/* The above cases are "private" tiles, we need to check the owner */
if (!IsTileOwner(dst_tile, aystar->user_data[NPF_OWNER]))
return;
/* Determine available tracks */
if (type != TRANSPORT_WATER && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, type))){
/* Road stations and road and train depots return 0 on GTTS, so we have to do this by hand... */
byte exitdir;
if (IsRoadStationTile(dst_tile))
exitdir = GetRoadStationDir(dst_tile);
else /* Road or train depot */
exitdir = GetDepotDirection(dst_tile, type);
/* Find the trackdirs that are available for a depot or station with this
* orientation. They are only "inwards", since we are reaching this tile
* from some other tile. This prevents vehicles driving into depots from
* the back */
ts = (1 << _dir_to_diag_trackdir[_reverse_dir[exitdir]]);
} else {
ts = GetTileTrackStatus(dst_tile, type);
}
trackdirs = ts & 0x3F3F; /* Filter out signal status and the unused bits */
DEBUG(npf, 4)("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirs);
/* Select only trackdirs we can reach from our current trackdir */
trackdirs &= _trackdir_reaches_trackdirs[src_trackdir];
if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
trackdirs &= ~_trackdir_crosses_trackdirs[src_trackdir];
DEBUG(npf,6)("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirs);
/* Enumerate possible track */
while (trackdirs != 0) {
byte dst_trackdir;
dst_trackdir = FindFirstBit2x64(trackdirs);
trackdirs = KillFirstBit2x64(trackdirs);
DEBUG(npf, 5)("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirs);
/* Check for oneway signal against us */
if (IsTileType(dst_tile, MP_RAILWAY) && (_map5[dst_tile]&0xC0) == 0x40) {
// the tile has a signal
byte signal_present = _map3_lo[dst_tile];
if (!(signal_present & _signal_along_trackdir[dst_trackdir])) {
// if one way signal not pointing towards us, stop going in this direction.
if (signal_present & _signal_against_trackdir[dst_trackdir])
break;
}
}
{
/* We've found ourselves a neighbour :-) */
AyStarNode* neighbour = &aystar->neighbours[i];
neighbour->tile = dst_tile;
neighbour->direction = dst_trackdir;
/* Save user data */
neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
NPFFillTrackdirChoice(neighbour, current);
}
i++;
}
aystar->num_neighbours = i;
}
/*
* Plan a route to the specified target (which is checked by target_proc),
* from start1 and if not NULL, from start2 as well. The type of transport we
* are checking is in type. reverse_penalty is applied to all routes that
* originate from the second start node.
* When we are looking for one specific target (optionally multiple tiles), we
* should use a good heuristic to perform aystar search. When we search for
* multiple targets that are spread around, we should perform a breadth first
* search by specifiying CalcZero as our heuristic.
*/
NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner, uint reverse_penalty) {
int r;
NPFFoundTargetData result;
/* Initialize procs */
_npf_aystar.CalculateH = heuristic_proc;
_npf_aystar.EndNodeCheck = target_proc;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize Start Node(s) */
start1->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start1->user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, start1, 0);
if (start2) {
start2->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start2->user_data[NPF_NODE_FLAGS] = 0;
NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
_npf_aystar.addstart(&_npf_aystar, start2, reverse_penalty);
}
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = 0xff;
_npf_aystar.user_path = &result;
/* Initialize target */
_npf_aystar.user_target = target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
if (result.best_bird_dist != 0) {
if (target) {
DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile);
} else {
/* Assumption: target == NULL, so we are looking for a depot */
DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile);
}
}
return result;
}
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start1.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start1.direction = trackdir1;
start2.direction = trackdir2;
start2.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner, 0);
}
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
return NPFRouteToStationOrTileTwoWay(tile, trackdir, INVALID_TILE, 0, target, type, owner);
}
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, TransportType type, Owner owner, uint reverse_penalty) {
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start1.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start1.direction = trackdir1;
start2.direction = trackdir2;
start2.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
/* perform a breadth first search. Target is NULL,
* since we are just looking for any depot...*/
return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), NULL, NPFFindDepot, NPFCalcZero, type, owner, reverse_penalty);
}
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
return NPFRouteToDepotBreadthFirstTwoWay(tile, trackdir, INVALID_TILE, 0, type, owner, 0);
}
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
/* Okay, what we're gonna do. First, we look at all depots, calculate
* the manhatten distance to get to each depot. We then sort them by
* distance. We start by trying to plan a route to the closest, then
* the next closest, etc. We stop when the best route we have found so
* far, is shorter than the manhattan distance. This will obviously
* always find the closest depot. It will probably be most efficient
* for ships, since the heuristic will not be to far off then. I hope.
*/
Queue depots;
int r;
NPFFoundTargetData best_result;
NPFFoundTargetData result;
NPFFindStationOrTileData target;
AyStarNode start;
Depot* current;
Depot *depot;
init_InsSort(&depots);
/* Okay, let's find all depots that we can use first */
FOR_ALL_DEPOTS(depot) {
/* Check if this is really a valid depot, it is of the needed type and
* owner */
if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
/* If so, let's add it to the queue, sorted by distance */
depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
}
/* Now, let's initialise the aystar */
/* Initialize procs */
_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize target */
target.station_index = -1; /* We will initialize dest_coords inside the loop below */
_npf_aystar.user_target = &target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* Initialize Start Node */
start.tile = tile;
start.direction = trackdir; /* We will initialize user_data inside the loop below */
/* Initialize Result */
_npf_aystar.user_path = &result;
best_result.best_path_dist = (uint)-1;
best_result.best_bird_dist = (uint)-1;
/* Just iterate the depots in order of increasing distance */
while ((current = depots.pop(&depots))) {
/* Check to see if we already have a path shorter than this
* depot's manhattan distance. HACK: We call DistanceManhattan
* again, we should probably modify the queue to give us that
* value... */
if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
break;
/* Initialize Start Node */
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start.user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, &start, 0);
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = 0xff;
/* Initialize target */
target.dest_coords = current->xy;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
/* This depot is closer */
if (result.best_path_dist < best_result.best_path_dist)
best_result = result;
}
if (result.best_bird_dist != 0) {
DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile);
}
return best_result;
}
void InitializeNPF(void)
{
init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE);
_npf_aystar.loops_per_tick = 0;
_npf_aystar.max_path_cost = 0;
//_npf_aystar.max_search_nodes = 0;
/* We will limit the number of nodes for now, until we have a better
* solution to really fix performance */
_npf_aystar.max_search_nodes = _patches.npf_max_search_nodes;
#if 0
init_AyStar(&_train_find_station, NTPHash, 1024);
init_AyStar(&_train_find_depot, NTPHash, 1024);
init_AyStar(&_road_find_station, NTPHash, 1024);
init_AyStar(&_road_find_depot, NTPHash, 1024);
_train_find_station.loops_per_tick = 0;
_train_find_depot.loops_per_tick = 0;
_road_find_station.loops_per_tick = 0;
_road_find_depot.loops_per_tick = 0;
_train_find_station.max_path_cost = 0;
_train_find_depot.max_path_cost = 0;
_road_find_station.max_path_cost = 0;
_road_find_depot.max_path_cost = 0;
_train_find_station.max_search_nodes = 0;
_train_find_depot.max_search_nodes = 0;
_road_find_station.max_search_nodes = 0;
_road_find_depot.max_search_nodes = 0;
_train_find_station.CalculateG = NPFRailPathCost;
_train_find_depot.CalculateG = NPFRailPathCost;
_road_find_station.CalculateG = NPFRoadPathCost;
_road_find_depot.CalculateG = NPFRoadPathCost;
_train_find_station.CalculateH = NPFCalcStationHeuristic;
_train_find_depot.CalculateH = NPFCalcStationHeuristic;
_road_find_station.CalculateH = NPFCalcStationHeuristic;
_road_find_depot.CalculateH = NPFCalcStationHeuristic;
_train_find_station.EndNodeCheck = NPFFindStationOrTile;
_train_find_depot.EndNodeCheck = NPFFindStationOrTile;
_road_find_station.EndNodeCheck = NPFFindStationOrTile;
_road_find_depot.EndNodeCheck = NPFFindStationOrTile;
_train_find_station.FoundEndNode = NPFSaveTargetData;
_train_find_depot.FoundEndNode = NPFSaveTargetData;
_road_find_station.FoundEndNode = NPFSaveTargetData;
_road_find_depot.FoundEndNode = NPFSaveTargetData;
_train_find_station.GetNeighbours = NPFFollowTrack;
_train_find_depot.GetNeighbours = NPFFollowTrack;
_road_find_station.GetNeighbours = NPFFollowTrack;
_road_find_depot.GetNeighbours = NPFFollowTrack;
#endif
}
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) {
/* Ships don't really reach their stations, but the tile in front. So don't
* save the station id for ships. For roadvehs we don't store it either,
* because multistop depends on vehicles actually reaching the exact
* dest_tile, not just any stop of that station.
* So only for train orders to stations we fill fstd->station_index, for all
* others only dest_coords */
if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) {
fstd->station_index = v->current_order.station;
/* Let's take the closest tile of the station as our target for trains */
fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
} else {
fstd->dest_coords = v->dest_tile;
fstd->station_index = -1;
}
}