OpenTTD-patches/src/newgrf_spritegroup.h

764 lines
22 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file newgrf_spritegroup.h Action 2 handling. */
#ifndef NEWGRF_SPRITEGROUP_H
#define NEWGRF_SPRITEGROUP_H
#include "town_type.h"
#include "engine_type.h"
#include "house_type.h"
#include "industry_type.h"
#include "newgrf_callbacks.h"
#include "newgrf_generic.h"
#include "newgrf_storage.h"
#include "newgrf_commons.h"
#include "3rdparty/cpp-btree/btree_set.h"
#include <map>
/**
* Gets the value of a so-called newgrf "register".
* @param i index of the register
* @pre i < 0x110
* @return the value of the register
*/
static inline uint32 GetRegister(uint i)
{
extern TemporaryStorageArray<int32, 0x110> _temp_store;
return _temp_store.GetValue(i);
}
/* List of different sprite group types */
enum SpriteGroupType : uint8 {
SGT_REAL,
SGT_DETERMINISTIC,
SGT_RANDOMIZED,
SGT_CALLBACK,
SGT_RESULT,
SGT_TILELAYOUT,
SGT_INDUSTRY_PRODUCTION,
};
struct SpriteGroup;
typedef uint32 SpriteGroupID;
struct ResolverObject;
enum AnalyseCallbackOperationMode : uint8 {
ACOM_CB_VAR,
ACOM_CB36_PROP,
ACOM_FIND_CB_RESULT,
ACOM_CB36_SPEED,
ACOM_INDUSTRY_TILE,
ACOM_CB_REFIT_CAPACITY,
};
struct AnalyseCallbackOperationIndustryTileData;
enum AnalyseCallbackOperationResultFlags : uint8 {
ACORF_NONE = 0,
ACORF_CB_RESULT_FOUND = 1 << 0,
ACORF_CB_REFIT_CAP_NON_WHITELIST_FOUND = 1 << 1,
ACORF_CB_REFIT_CAP_SEEN_VAR_47 = 1 << 2,
};
DECLARE_ENUM_AS_BIT_SET(AnalyseCallbackOperationResultFlags)
struct AnalyseCallbackOperation {
struct FindCBResultData {
uint16 callback;
bool check_var_10;
uint8 var_10_value;
};
btree::btree_set<const SpriteGroup *> seen;
AnalyseCallbackOperationMode mode = ACOM_CB_VAR;
SpriteGroupCallbacksUsed callbacks_used = SGCU_NONE;
AnalyseCallbackOperationResultFlags result_flags = ACORF_NONE;
uint64 properties_used = 0;
union {
FindCBResultData cb_result;
AnalyseCallbackOperationIndustryTileData *indtile;
} data;
};
/* SPRITE_WIDTH is 24. ECS has roughly 30 sprite groups per real sprite.
* Adding an 'extra' margin would be assuming 64 sprite groups per real
* sprite. 64 = 2^6, so 2^30 should be enough (for now) */
typedef Pool<SpriteGroup, SpriteGroupID, 1024, 1 << 30, PT_DATA> SpriteGroupPool;
extern SpriteGroupPool _spritegroup_pool;
enum SpriteGroupFlags : uint8 {
SGF_NONE = 0,
SGF_ACTION6 = 1 << 0,
};
DECLARE_ENUM_AS_BIT_SET(SpriteGroupFlags)
/* Common wrapper for all the different sprite group types */
struct SpriteGroup : SpriteGroupPool::PoolItem<&_spritegroup_pool> {
protected:
SpriteGroup(SpriteGroupType type) : nfo_line(0), type(type) {}
/** Base sprite group resolver */
virtual const SpriteGroup *Resolve(ResolverObject &object) const { return this; };
public:
virtual ~SpriteGroup() {}
uint32 nfo_line;
SpriteGroupType type;
GrfSpecFeature feature;
SpriteGroupFlags sg_flags = SGF_NONE;
virtual SpriteID GetResult() const { return 0; }
virtual byte GetNumResults() const { return 0; }
virtual uint16 GetCallbackResult() const { return CALLBACK_FAILED; }
virtual void AnalyseCallbacks(AnalyseCallbackOperation &op) const {};
static const SpriteGroup *Resolve(const SpriteGroup *group, ResolverObject &object, bool top_level = true);
};
/* 'Real' sprite groups contain a list of other result or callback sprite
* groups. */
struct RealSpriteGroup : SpriteGroup {
RealSpriteGroup() : SpriteGroup(SGT_REAL) {}
/* Loaded = in motion, loading = not moving
* Each group contains several spritesets, for various loading stages */
/* XXX: For stations the meaning is different - loaded is for stations
* with small amount of cargo whilst loading is for stations with a lot
* of da stuff. */
std::vector<const SpriteGroup *> loaded; ///< List of loaded groups (can be SpriteIDs or Callback results)
std::vector<const SpriteGroup *> loading; ///< List of loading groups (can be SpriteIDs or Callback results)
protected:
const SpriteGroup *Resolve(ResolverObject &object) const override;
};
/* Shared by deterministic and random groups. */
enum VarSpriteGroupScope : uint8 {
VSG_BEGIN,
VSG_SCOPE_SELF = VSG_BEGIN, ///< Resolved object itself
VSG_SCOPE_PARENT, ///< Related object of the resolved one
VSG_SCOPE_RELATIVE, ///< Relative position (vehicles only)
VSG_END
};
DECLARE_POSTFIX_INCREMENT(VarSpriteGroupScope)
enum DeterministicSpriteGroupSize : uint8 {
DSG_SIZE_BYTE,
DSG_SIZE_WORD,
DSG_SIZE_DWORD,
};
enum DeterministicSpriteGroupAdjustType : uint8 {
DSGA_TYPE_NONE,
DSGA_TYPE_DIV,
DSGA_TYPE_MOD,
DSGA_TYPE_EQ,
DSGA_TYPE_NEQ,
};
enum DeterministicSpriteGroupAdjustOperation : uint8 {
DSGA_OP_ADD, ///< a + b
DSGA_OP_SUB, ///< a - b
DSGA_OP_SMIN, ///< (signed) min(a, b)
DSGA_OP_SMAX, ///< (signed) max(a, b)
DSGA_OP_UMIN, ///< (unsigned) min(a, b)
DSGA_OP_UMAX, ///< (unsigned) max(a, b)
DSGA_OP_SDIV, ///< (signed) a / b
DSGA_OP_SMOD, ///< (signed) a % b
DSGA_OP_UDIV, ///< (unsigned) a / b
DSGA_OP_UMOD, ///< (unsigned) a & b
DSGA_OP_MUL, ///< a * b
DSGA_OP_AND, ///< a & b
DSGA_OP_OR, ///< a | b
DSGA_OP_XOR, ///< a ^ b
DSGA_OP_STO, ///< store a into temporary storage, indexed by b. return a
DSGA_OP_RST, ///< return b
DSGA_OP_STOP, ///< store a into persistent storage, indexed by b, return a
DSGA_OP_ROR, ///< rotate a b positions to the right
DSGA_OP_SCMP, ///< (signed) comparison (a < b -> 0, a == b = 1, a > b = 2)
DSGA_OP_UCMP, ///< (unsigned) comparison (a < b -> 0, a == b = 1, a > b = 2)
DSGA_OP_SHL, ///< a << b
DSGA_OP_SHR, ///< (unsigned) a >> b
DSGA_OP_SAR, ///< (signed) a >> b
DSGA_OP_END,
DSGA_OP_TERNARY = 0x80, ///< a == 0 ? b : c,
DSGA_OP_EQ, ///< a == b ? 1 : 0,
DSGA_OP_SLT, ///< (signed) a < b ? 1 : 0,
DSGA_OP_SGE, ///< (signed) a >= b ? 1 : 0,
DSGA_OP_SLE, ///< (signed) a <= b ? 1 : 0,
DSGA_OP_SGT, ///< (signed) a > b ? 1 : 0,
DSGA_OP_RSUB, ///< b - a
DSGA_OP_STO_NC, ///< store b into temporary storage, indexed by c. return a
DSGA_OP_ABS, ///< abs(a)
DSGA_OP_JZ, ///< jump forward fixed number of adjusts (to adjust after DSGAF_END_BLOCK marker (taking into account nesting)) if b is zero. return 0 if jumped, return a if not jumped
DSGA_OP_SPECIAL_END,
};
static_assert((DSGA_OP_SLT ^ 1) == DSGA_OP_SGE);
static_assert((DSGA_OP_SLE ^ 1) == DSGA_OP_SGT);
enum DeterministicSpriteGroupAdjustFlags : uint8 {
DSGAF_NONE = 0,
DSGAF_SKIP_ON_ZERO = 1 << 0,
DSGAF_SKIP_ON_LSB_SET = 1 << 1,
DSGAF_LAST_VAR_READ = 1 << 2,
DSGAF_JUMP_INS_HINT = 1 << 3,
DSGAF_END_BLOCK = 1 << 4,
};
DECLARE_ENUM_AS_BIT_SET(DeterministicSpriteGroupAdjustFlags);
inline bool IsEvalAdjustWithZeroRemovable(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_ADD:
case DSGA_OP_SUB:
case DSGA_OP_OR:
case DSGA_OP_XOR:
case DSGA_OP_ROR:
case DSGA_OP_SHL:
case DSGA_OP_SHR:
case DSGA_OP_SAR:
return true;
default:
return false;
}
}
inline bool IsEvalAdjustWithZeroAlwaysZero(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_UMIN:
case DSGA_OP_MUL:
case DSGA_OP_AND:
case DSGA_OP_RST:
return true;
default:
return false;
}
}
inline bool IsEvalAdjustWithSideEffects(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_STO:
case DSGA_OP_STOP:
return true;
default:
return false;
}
}
inline bool IsEvalAdjustUsableForConstantPropagation(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_ADD:
case DSGA_OP_SUB:
case DSGA_OP_SMIN:
case DSGA_OP_SMAX:
case DSGA_OP_UMIN:
case DSGA_OP_UMAX:
case DSGA_OP_SDIV:
case DSGA_OP_SMOD:
case DSGA_OP_UDIV:
case DSGA_OP_UMOD:
case DSGA_OP_MUL:
case DSGA_OP_AND:
case DSGA_OP_OR:
case DSGA_OP_XOR:
case DSGA_OP_ROR:
case DSGA_OP_SCMP:
case DSGA_OP_UCMP:
case DSGA_OP_SHL:
case DSGA_OP_SHR:
case DSGA_OP_SAR:
return true;
default:
return false;
}
}
inline bool IsEvalAdjustOperationCommutative(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_ADD:
case DSGA_OP_MUL:
case DSGA_OP_AND:
case DSGA_OP_OR:
case DSGA_OP_XOR:
return true;
default:
return false;
}
}
inline bool IsEvalAdjustOperationAntiCommutative(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_SUB:
case DSGA_OP_RSUB:
return true;
default:
return false;
}
}
inline bool IsEvalAdjustOperationReversable(DeterministicSpriteGroupAdjustOperation op)
{
return IsEvalAdjustOperationCommutative(op) || IsEvalAdjustOperationAntiCommutative(op);
}
inline DeterministicSpriteGroupAdjustOperation ReverseEvalAdjustOperation(DeterministicSpriteGroupAdjustOperation op)
{
if (IsEvalAdjustOperationCommutative(op)) return op;
switch (op) {
case DSGA_OP_SUB:
return DSGA_OP_RSUB;
case DSGA_OP_RSUB:
return DSGA_OP_SUB;
default:
NOT_REACHED();
}
}
inline bool IsEvalAdjustOperationRelationalComparison(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_SLT:
case DSGA_OP_SGE:
case DSGA_OP_SLE:
case DSGA_OP_SGT:
return true;
default:
return false;
}
}
inline DeterministicSpriteGroupAdjustOperation InvertEvalAdjustRelationalComparisonOperation(DeterministicSpriteGroupAdjustOperation op)
{
assert(IsEvalAdjustOperationRelationalComparison(op));
return (DeterministicSpriteGroupAdjustOperation)(op ^ 1);
}
inline bool IsEvalAdjustOperationOnConstantEffectiveLoad(DeterministicSpriteGroupAdjustOperation op, uint32 constant)
{
switch (op) {
case DSGA_OP_ADD:
case DSGA_OP_OR:
case DSGA_OP_XOR:
return constant == 0;
case DSGA_OP_MUL:
return constant == 1;
default:
return false;
}
}
inline bool IsEvalAdjustWithZeroLastValueAlwaysZero(DeterministicSpriteGroupAdjustOperation op)
{
switch (op) {
case DSGA_OP_SDIV:
case DSGA_OP_SMOD:
case DSGA_OP_UDIV:
case DSGA_OP_UMOD:
case DSGA_OP_UMIN:
case DSGA_OP_MUL:
case DSGA_OP_AND:
case DSGA_OP_ROR:
case DSGA_OP_SHL:
case DSGA_OP_SHR:
case DSGA_OP_SAR:
return true;
default:
return false;
}
}
inline bool IsConstantComparisonAdjustType(DeterministicSpriteGroupAdjustType adjust_type)
{
switch (adjust_type) {
case DSGA_TYPE_EQ:
case DSGA_TYPE_NEQ:
return true;
default:
return false;
}
}
inline DeterministicSpriteGroupAdjustType InvertConstantComparisonAdjustType(DeterministicSpriteGroupAdjustType adjust_type)
{
assert(IsConstantComparisonAdjustType(adjust_type));
return (adjust_type == DSGA_TYPE_EQ) ? DSGA_TYPE_NEQ : DSGA_TYPE_EQ;
}
struct DeterministicSpriteGroupAdjust {
DeterministicSpriteGroupAdjustOperation operation;
DeterministicSpriteGroupAdjustType type;
uint16 variable;
byte shift_num;
DeterministicSpriteGroupAdjustFlags adjust_flags = DSGAF_NONE;
uint32 parameter; ///< Used for variables between 0x60 and 0x7F inclusive.
uint32 and_mask;
uint32 add_val; ///< Also used for DSGA_TYPE_EQ/DSGA_TYPE_NEQ constants and DSGA_OP_TERNARY false value
uint32 divmod_val; ///< Also used for DSGA_OP_STO_NC
union {
const SpriteGroup *subroutine;
uint32 jump;
};
};
struct DeterministicSpriteGroupRange {
const SpriteGroup *group;
uint32 low;
uint32 high;
};
enum DeterministicSpriteGroupFlags : uint8 {
DSGF_NONE = 0,
DSGF_NO_DSE = 1 << 0,
DSGF_DSE_RECURSIVE_DISABLE = 1 << 1,
DSGF_VAR_TRACKING_PENDING = 1 << 2,
DSGF_REQUIRES_VAR1C = 1 << 3,
DSGF_CHECK_EXPENSIVE_VARS = 1 << 4,
DSGF_CHECK_INSERT_JUMP = 1 << 5,
};
DECLARE_ENUM_AS_BIT_SET(DeterministicSpriteGroupFlags)
struct DeterministicSpriteGroupShadowCopy {
std::vector<DeterministicSpriteGroupAdjust> adjusts;
std::vector<DeterministicSpriteGroupRange> ranges;
const SpriteGroup *default_group;
};
struct DeterministicSpriteGroup : SpriteGroup {
DeterministicSpriteGroup() : SpriteGroup(SGT_DETERMINISTIC) {}
VarSpriteGroupScope var_scope;
DeterministicSpriteGroupSize size;
bool calculated_result;
DeterministicSpriteGroupFlags dsg_flags = DSGF_NONE;
std::vector<DeterministicSpriteGroupAdjust> adjusts;
std::vector<DeterministicSpriteGroupRange> ranges; // Dynamically allocated
/* Dynamically allocated, this is the sole owner */
const SpriteGroup *default_group;
const SpriteGroup *error_group; // was first range, before sorting ranges
void AnalyseCallbacks(AnalyseCallbackOperation &op) const override;
bool GroupMayBeBypassed() const;
protected:
const SpriteGroup *Resolve(ResolverObject &object) const override;
};
enum RandomizedSpriteGroupCompareMode : uint8 {
RSG_CMP_ANY,
RSG_CMP_ALL,
};
struct RandomizedSpriteGroupShadowCopy {
std::vector<const SpriteGroup *> groups;
};
struct RandomizedSpriteGroup : SpriteGroup {
RandomizedSpriteGroup() : SpriteGroup(SGT_RANDOMIZED) {}
VarSpriteGroupScope var_scope; ///< Take this object:
RandomizedSpriteGroupCompareMode cmp_mode; ///< Check for these triggers:
byte triggers;
byte count;
byte lowest_randbit; ///< Look for this in the per-object randomized bitmask:
std::vector<const SpriteGroup *> groups; ///< Take the group with appropriate index:
void AnalyseCallbacks(AnalyseCallbackOperation &op) const override;
protected:
const SpriteGroup *Resolve(ResolverObject &object) const override;
};
extern std::map<const DeterministicSpriteGroup *, DeterministicSpriteGroupShadowCopy> _deterministic_sg_shadows;
extern std::map<const RandomizedSpriteGroup *, RandomizedSpriteGroupShadowCopy> _randomized_sg_shadows;
extern bool _grfs_loaded_with_sg_shadow_enable;
/* This contains a callback result. A failed callback has a value of
* CALLBACK_FAILED */
struct CallbackResultSpriteGroup : SpriteGroup {
/**
* Creates a spritegroup representing a callback result
* @param result The result as returned from TransformResultValue
*/
CallbackResultSpriteGroup(uint16 result) :
SpriteGroup(SGT_CALLBACK),
result(result) {}
/**
* Transforms a callback result value
* @param value The value that was used to represent this callback result
* @param grf_version8 True, if we are dealing with a new NewGRF which uses GRF version >= 8.
*/
static uint16 TransformResultValue(uint16 value, bool grf_version8)
{
/* Old style callback results (only valid for version < 8) have the highest byte 0xFF so signify it is a callback result.
* New style ones only have the highest bit set (allows 15-bit results, instead of just 8) */
if (!grf_version8 && (value >> 8) == 0xFF) {
return value & ~0xFF00;
} else {
return value & ~0x8000;
}
}
uint16 result;
uint16 GetCallbackResult() const override { return this->result; }
void AnalyseCallbacks(AnalyseCallbackOperation &op) const override;
};
/* A result sprite group returns the first SpriteID and the number of
* sprites in the set */
struct ResultSpriteGroup : SpriteGroup {
/**
* Creates a spritegroup representing a sprite number result.
* @param sprite The sprite number.
* @param num_sprites The number of sprites per set.
* @return A spritegroup representing the sprite number result.
*/
ResultSpriteGroup(SpriteID sprite, byte num_sprites) :
SpriteGroup(SGT_RESULT),
sprite(sprite),
num_sprites(num_sprites)
{
}
SpriteID sprite;
byte num_sprites;
SpriteID GetResult() const { return this->sprite; }
byte GetNumResults() const { return this->num_sprites; }
};
/**
* Action 2 sprite layout for houses, industry tiles, objects and airport tiles.
*/
struct TileLayoutSpriteGroup : SpriteGroup {
TileLayoutSpriteGroup() : SpriteGroup(SGT_TILELAYOUT) {}
~TileLayoutSpriteGroup() {}
NewGRFSpriteLayout dts;
const DrawTileSprites *ProcessRegisters(uint8 *stage) const;
};
struct IndustryProductionSpriteGroup : SpriteGroup {
IndustryProductionSpriteGroup() : SpriteGroup(SGT_INDUSTRY_PRODUCTION) {}
uint8 version; ///< Production callback version used, or 0xFF if marked invalid
uint8 num_input; ///< How many subtract_input values are valid
int16 subtract_input[INDUSTRY_NUM_INPUTS]; ///< Take this much of the input cargo (can be negative, is indirect in cb version 1+)
CargoID cargo_input[INDUSTRY_NUM_INPUTS]; ///< Which input cargoes to take from (only cb version 2)
uint8 num_output; ///< How many add_output values are valid
uint16 add_output[INDUSTRY_NUM_OUTPUTS]; ///< Add this much output cargo when successful (unsigned, is indirect in cb version 1+)
CargoID cargo_output[INDUSTRY_NUM_OUTPUTS]; ///< Which output cargoes to add to (only cb version 2)
uint8 again;
};
struct GetVariableExtra {
bool available;
uint32 mask;
GetVariableExtra(uint32 mask_ = 0xFFFFFFFF)
: available(true), mask(mask_) {}
};
/**
* Interface to query and set values specific to a single #VarSpriteGroupScope (action 2 scope).
*
* Multiple of these interfaces are combined into a #ResolverObject to allow access
* to different game entities from a #SpriteGroup-chain (action 1-2-3 chain).
*/
struct ScopeResolver {
ResolverObject &ro; ///< Surrounding resolver object.
ScopeResolver(ResolverObject &ro) : ro(ro) {}
virtual ~ScopeResolver() {}
virtual uint32 GetRandomBits() const;
virtual uint32 GetTriggers() const;
virtual uint32 GetVariable(uint16 variable, uint32 parameter, GetVariableExtra *extra) const;
virtual void StorePSA(uint reg, int32 value);
};
/**
* Interface for #SpriteGroup-s to access the gamestate.
*
* Using this interface #SpriteGroup-chains (action 1-2-3 chains) can be resolved,
* to get the results of callbacks, rerandomisations or normal sprite lookups.
*/
struct ResolverObject {
/**
* Resolver constructor.
* @param grffile NewGRF file associated with the object (or \c nullptr if none).
* @param callback Callback code being resolved (default value is #CBID_NO_CALLBACK).
* @param callback_param1 First parameter (var 10) of the callback (only used when \a callback is also set).
* @param callback_param2 Second parameter (var 18) of the callback (only used when \a callback is also set).
*/
ResolverObject(const GRFFile *grffile, CallbackID callback = CBID_NO_CALLBACK, uint32 callback_param1 = 0, uint32 callback_param2 = 0)
: default_scope(*this), callback(callback), callback_param1(callback_param1), callback_param2(callback_param2), grffile(grffile), root_spritegroup(nullptr)
{
this->ResetState();
}
virtual ~ResolverObject() {}
ScopeResolver default_scope; ///< Default implementation of the grf scope.
CallbackID callback; ///< Callback being resolved.
uint32 callback_param1; ///< First parameter (var 10) of the callback.
uint32 callback_param2; ///< Second parameter (var 18) of the callback.
uint32 last_value; ///< Result of most recent DeterministicSpriteGroup (including procedure calls)
uint32 waiting_triggers; ///< Waiting triggers to be used by any rerandomisation. (scope independent)
uint32 used_triggers; ///< Subset of cur_triggers, which actually triggered some rerandomisation. (scope independent)
uint32 reseed[VSG_END]; ///< Collects bits to rerandomise while triggering triggers.
const GRFFile *grffile; ///< GRFFile the resolved SpriteGroup belongs to
const SpriteGroup *root_spritegroup; ///< Root SpriteGroup to use for resolving
/**
* Resolve SpriteGroup.
* @return Result spritegroup.
*/
const SpriteGroup *Resolve()
{
return SpriteGroup::Resolve(this->root_spritegroup, *this);
}
/**
* Resolve callback.
* @return Callback result.
*/
uint16 ResolveCallback()
{
const SpriteGroup *result = Resolve();
return result != nullptr ? result->GetCallbackResult() : CALLBACK_FAILED;
}
virtual const SpriteGroup *ResolveReal(const RealSpriteGroup *group) const;
virtual ScopeResolver *GetScope(VarSpriteGroupScope scope = VSG_SCOPE_SELF, byte relative = 0);
/**
* Returns the waiting triggers that did not trigger any rerandomisation.
*/
uint32 GetRemainingTriggers() const
{
return this->waiting_triggers & ~this->used_triggers;
}
/**
* Returns the OR-sum of all bits that need reseeding
* independent of the scope they were accessed with.
* @return OR-sum of the bits.
*/
uint32 GetReseedSum() const
{
uint32 sum = 0;
for (VarSpriteGroupScope vsg = VSG_BEGIN; vsg < VSG_END; vsg++) {
sum |= this->reseed[vsg];
}
return sum;
}
/**
* Resets the dynamic state of the resolver object.
* To be called before resolving an Action-1-2-3 chain.
*/
void ResetState()
{
this->last_value = 0;
this->waiting_triggers = 0;
this->used_triggers = 0;
memset(this->reseed, 0, sizeof(this->reseed));
}
/**
* Get the feature number being resolved for.
* This function is mainly intended for the callback profiling feature.
*/
virtual GrfSpecFeature GetFeature() const { return GSF_INVALID; }
/**
* Get an identifier for the item being resolved.
* This function is mainly intended for the callback profiling feature,
* and should return an identifier recognisable by the NewGRF developer.
*/
virtual uint32 GetDebugID() const { return 0; }
};
enum DumpSpriteGroupPrintOp {
DSGPO_PRINT,
DSGPO_START,
DSGPO_END,
DSGPO_NFO_LINE,
};
using DumpSpriteGroupPrinter = std::function<void(const SpriteGroup *, DumpSpriteGroupPrintOp, uint32, const char *)>;
struct SpriteGroupDumper {
static bool use_shadows;
private:
char buffer[1024];
DumpSpriteGroupPrinter print_fn;
const SpriteGroup *top_default_group = nullptr;
btree::btree_set<const DeterministicSpriteGroup *> seen_dsgs;
enum SpriteGroupDumperFlags {
SGDF_DEFAULT = 1 << 0,
};
public:
SpriteGroupDumper(DumpSpriteGroupPrinter print) : print_fn(print) {}
void DumpSpriteGroup(const SpriteGroup *sg, int padding, uint flags);
};
void DumpSpriteGroup(const SpriteGroup *sg, DumpSpriteGroupPrinter print);
uint32 EvaluateDeterministicSpriteGroupAdjust(DeterministicSpriteGroupSize size, const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, uint32 last_value, uint32 value);
#endif /* NEWGRF_SPRITEGROUP_H */