You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/road.cpp

1148 lines
41 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file road.cpp Generic road related functions. */
#include "stdafx.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "rail_map.h"
#include "road_map.h"
#include "water_map.h"
#include "genworld.h"
#include "company_func.h"
#include "company_base.h"
#include "engine_base.h"
#include "date_func.h"
#include "landscape.h"
#include "road.h"
#include "town.h"
#include "pathfinder/npf/aystar.h"
#include "tunnelbridge.h"
#include "road_func.h"
#include "roadveh.h"
#include "map_func.h"
#include "core/backup_type.hpp"
#include "core/random_func.hpp"
#include "3rdparty/robin_hood/robin_hood.h"
#include <numeric>
#include "cheat_func.h"
#include "command_func.h"
#include "safeguards.h"
uint32_t _road_layout_change_counter = 0;
/** Whether to build public roads */
enum PublicRoadsConstruction {
PRC_NONE, ///< Generate no public roads
PRC_WITH_CURVES, ///< Generate roads with lots of curves
PRC_AVOID_CURVES, ///< Generate roads avoiding curves if possible
};
/**
* Return if the tile is a valid tile for a crossing.
*
* @param tile the current tile
* @param ax the axis of the road over the rail
* @return true if it is a valid tile
*/
static bool IsPossibleCrossing(const TileIndex tile, Axis ax)
{
return (IsTileType(tile, MP_RAILWAY) &&
GetRailTileType(tile) == RAIL_TILE_NORMAL &&
GetTrackBits(tile) == (ax == AXIS_X ? TRACK_BIT_Y : TRACK_BIT_X) &&
std::get<0>(GetFoundationSlope(tile)) == SLOPE_FLAT);
}
/**
* Clean up unnecessary RoadBits of a planned tile.
* @param tile current tile
* @param org_rb planned RoadBits
* @return optimised RoadBits
*/
RoadBits CleanUpRoadBits(const TileIndex tile, RoadBits org_rb)
{
if (!IsValidTile(tile)) return ROAD_NONE;
for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
TileIndex neighbor_tile = TileAddByDiagDir(tile, dir);
/* Get the Roadbit pointing to the neighbor_tile */
const RoadBits target_rb = DiagDirToRoadBits(dir);
/* If the roadbit is in the current plan */
if (org_rb & target_rb) {
bool connective = false;
const RoadBits mirrored_rb = MirrorRoadBits(target_rb);
test_tile:
if (IsValidTile(neighbor_tile)) {
switch (GetTileType(neighbor_tile)) {
/* Always connective ones */
case MP_CLEAR: case MP_TREES:
connective = true;
break;
/* The conditionally connective ones */
case MP_TUNNELBRIDGE:
case MP_STATION:
case MP_ROAD:
if (IsNormalRoadTile(neighbor_tile)) {
/* Always connective */
connective = true;
} else {
const RoadBits neighbor_rb = GetAnyRoadBits(neighbor_tile, RTT_ROAD) | GetAnyRoadBits(neighbor_tile, RTT_TRAM);
/* Accept only connective tiles */
connective = (neighbor_rb & mirrored_rb) != ROAD_NONE;
}
break;
case MP_RAILWAY: {
if (IsPossibleCrossing(neighbor_tile, DiagDirToAxis(dir))) {
/* Check far side of crossing */
neighbor_tile = TileAddByDiagDir(neighbor_tile, dir);
goto test_tile;
}
break;
}
case MP_WATER:
/* Check for real water tile */
connective = !IsWater(neighbor_tile);
break;
/* The definitely not connective ones */
default: break;
}
}
/* If the neighbor tile is inconnective, remove the planned road connection to it */
if (!connective) org_rb ^= target_rb;
}
}
return org_rb;
}
/**
* Finds out, whether given company has a given RoadType available for construction.
* @param company ID of company
* @param roadtypet RoadType to test
* @return true if company has the requested RoadType available
*/
bool HasRoadTypeAvail(const CompanyID company, RoadType roadtype)
{
if (company == OWNER_DEITY || company == OWNER_TOWN || _game_mode == GM_EDITOR || _generating_world) {
const RoadTypeInfo *rti = GetRoadTypeInfo(roadtype);
if (rti->label == 0) return false;
/* Not yet introduced at this date. */
if (IsInsideMM(rti->introduction_date, 0, CalTime::MAX_DATE.base()) && rti->introduction_date > CalTime::CurDate()) return false;
/*
* Do not allow building hidden road types, except when a town may build it.
* The GS under deity mode, as well as anybody in the editor builds roads that are
* owned by towns. So if a town may build it, it should be buildable by them too.
*/
bool available = (rti->flags & ROTFB_HIDDEN) == 0 || (rti->flags & ROTFB_TOWN_BUILD) != 0;
if (!available && (company == OWNER_TOWN || _game_mode == GM_EDITOR || _generating_world)) {
if (roadtype == GetTownRoadType()) return true;
}
return available;
} else {
const Company *c = Company::GetIfValid(company);
if (c == nullptr) return false;
return HasBit(c->avail_roadtypes & ~_roadtypes_hidden_mask, roadtype);
}
}
static RoadTypes GetMaskForRoadTramType(RoadTramType rtt)
{
return rtt == RTT_TRAM ? _roadtypes_type : ~_roadtypes_type;
}
/**
* Test if any buildable RoadType is available for a company.
* @param company the company in question
* @return true if company has any RoadTypes available
*/
bool HasAnyRoadTypesAvail(CompanyID company, RoadTramType rtt)
{
return (Company::Get(company)->avail_roadtypes & ~_roadtypes_hidden_mask & GetMaskForRoadTramType(rtt)) != ROADTYPES_NONE;
}
/**
* Validate functions for rail building.
* @param roadtype road type to check.
* @return true if the current company may build the road.
*/
bool ValParamRoadType(RoadType roadtype)
{
return roadtype < ROADTYPE_END && HasRoadTypeAvail(_current_company, roadtype);
}
/**
* Add the road types that are to be introduced at the given date.
* @param rt Roadtype
* @param current The currently available roadtypes.
* @param date The date for the introduction comparisons.
* @return The road types that should be available when date
* introduced road types are taken into account as well.
*/
RoadTypes AddDateIntroducedRoadTypes(RoadTypes current, CalTime::Date date)
{
RoadTypes rts = current;
for (RoadType rt = ROADTYPE_BEGIN; rt != ROADTYPE_END; rt++) {
const RoadTypeInfo *rti = GetRoadTypeInfo(rt);
/* Unused road type. */
if (rti->label == 0) continue;
/* Not date introduced. */
if (!IsInsideMM(rti->introduction_date, 0, CalTime::MAX_DATE.base())) continue;
/* Not yet introduced at this date. */
if (rti->introduction_date > date) continue;
/* Have we introduced all required roadtypes? */
RoadTypes required = rti->introduction_required_roadtypes;
if ((rts & required) != required) continue;
rts |= rti->introduces_roadtypes;
}
/* When we added roadtypes we need to run this method again; the added
* roadtypes might enable more rail types to become introduced. */
return rts == current ? rts : AddDateIntroducedRoadTypes(rts, date);
}
/**
* Get the road types the given company can build.
* @param company the company to get the road types for.
* @param introduces If true, include road types introduced by other road types
* @return the road types.
*/
RoadTypes GetCompanyRoadTypes(CompanyID company, bool introduces)
{
RoadTypes rts = ROADTYPES_NONE;
for (const Engine *e : Engine::IterateType(VEH_ROAD)) {
const EngineInfo *ei = &e->info;
if (HasBit(ei->climates, _settings_game.game_creation.landscape) &&
(HasBit(e->company_avail, company) || CalTime::CurDate() >= e->intro_date + DAYS_IN_YEAR)) {
const RoadVehicleInfo *rvi = &e->u.road;
assert(rvi->roadtype < ROADTYPE_END);
if (introduces) {
rts |= GetRoadTypeInfo(rvi->roadtype)->introduces_roadtypes;
} else {
SetBit(rts, rvi->roadtype);
}
}
}
if (introduces) return AddDateIntroducedRoadTypes(rts, CalTime::CurDate());
return rts;
}
/**
* Get list of road types, regardless of company availability.
* @param introduces If true, include road types introduced by other road types
* @return the road types.
*/
RoadTypes GetRoadTypes(bool introduces)
{
RoadTypes rts = ROADTYPES_NONE;
for (const Engine *e : Engine::IterateType(VEH_ROAD)) {
const EngineInfo *ei = &e->info;
if (!HasBit(ei->climates, _settings_game.game_creation.landscape)) continue;
const RoadVehicleInfo *rvi = &e->u.road;
assert(rvi->roadtype < ROADTYPE_END);
if (introduces) {
rts |= GetRoadTypeInfo(rvi->roadtype)->introduces_roadtypes;
} else {
SetBit(rts, rvi->roadtype);
}
}
if (introduces) return AddDateIntroducedRoadTypes(rts, CalTime::MAX_DATE);
return rts;
}
/**
* Get the road type for a given label.
* @param label the roadtype label.
* @param allow_alternate_labels Search in the alternate label lists as well.
* @return the roadtype.
*/
RoadType GetRoadTypeByLabel(RoadTypeLabel label, bool allow_alternate_labels)
{
/* Loop through each road type until the label is found */
for (RoadType r = ROADTYPE_BEGIN; r != ROADTYPE_END; r++) {
const RoadTypeInfo *rti = GetRoadTypeInfo(r);
if (rti->label == label) return r;
}
if (allow_alternate_labels) {
/* Test if any road type defines the label as an alternate. */
for (RoadType r = ROADTYPE_BEGIN; r != ROADTYPE_END; r++) {
const RoadTypeInfo *rti = GetRoadTypeInfo(r);
if (std::find(rti->alternate_labels.begin(), rti->alternate_labels.end(), label) != rti->alternate_labels.end()) return r;
}
}
/* No matching label was found, so it is invalid */
return INVALID_ROADTYPE;
}
/* ========================================================================= */
/* PUBLIC ROADS */
/* ========================================================================= */
CommandCost CmdBuildBridge(TileIndex end_tile, DoCommandFlag flags, uint32_t p1, uint32_t p2, const char *text = nullptr);
CommandCost CmdBuildTunnel(TileIndex tile, DoCommandFlag flags, uint32_t p1, uint32_t p2, const char *text = nullptr);
CommandCost CmdBuildRoad(TileIndex tile, DoCommandFlag flags, uint32_t p1, uint32_t p2, const char *text = nullptr);
static RoadType _public_road_type;
static const uint _public_road_hash_size = 8U; ///< The number of bits the hash for river finding should have.
/** Helper function to check if a slope along a certain direction is going up an inclined slope. */
static bool IsUpwardsSlope(const Slope slope, DiagDirection road_direction)
{
if (!IsInclinedSlope(slope)) return false;
const auto slope_direction = GetInclinedSlopeDirection(slope);
return road_direction == slope_direction;
}
/** Helper function to check if a slope along a certain direction is going down an inclined slope. */
static bool IsDownwardsSlope(const Slope slope, const DiagDirection road_direction)
{
if (!IsInclinedSlope(slope)) return false;
const auto slope_direction = GetInclinedSlopeDirection(slope);
return road_direction == ReverseDiagDir(slope_direction);
}
/** Helper function to check if a slope is effectively flat. */
static bool IsSufficientlyFlatSlope(const Slope slope)
{
return !IsSteepSlope(slope) && HasBit(VALID_LEVEL_CROSSING_SLOPES, slope);
}
static TileIndex BuildTunnel(PathNode *current, TileIndex end_tile = INVALID_TILE, const bool build_tunnel = false)
{
const TileIndex start_tile = current->node.tile;
int start_z;
std::tie(std::ignore, start_z) = GetTileSlopeZ(start_tile);
if (start_z == 0) return INVALID_TILE;
const DiagDirection direction = GetInclinedSlopeDirection(GetTileSlope(start_tile));
if (!build_tunnel) {
// We are not building yet, so we still need to find the end_tile.
const TileIndexDiff delta = TileOffsByDiagDir(direction);
end_tile = start_tile;
int end_z;
const uint tunnel_length_limit = std::min<uint>(_settings_game.construction.max_tunnel_length, 30);
for (uint tunnel_length = 1;; tunnel_length++) {
end_tile += delta;
if (!IsValidTile(end_tile)) return INVALID_TILE;
if (tunnel_length > tunnel_length_limit) return INVALID_TILE;
std::tie(std::ignore, end_z) = GetTileSlopeZ(end_tile);
if (start_z == end_z) break;
if (!_cheats.crossing_tunnels.value && IsTunnelInWay(end_tile, start_z)) return INVALID_TILE;
}
// No too long or super-short tunnels and always ending up on a matching upwards slope.
if (IsSteepSlope(GetTileSlope(end_tile)) || IsHalftileSlope(GetTileSlope(end_tile))) return INVALID_TILE;
if (GetTileSlope(start_tile) != ComplementSlope(GetTileSlope(end_tile))) return INVALID_TILE;
if (AreTilesAdjacent(start_tile, end_tile)) return INVALID_TILE;
if (!IsValidTile(end_tile)) return INVALID_TILE;
if (!IsTileType(end_tile, MP_CLEAR) && !IsTileType(end_tile, MP_TREES)) return INVALID_TILE;
}
assert(!build_tunnel || (IsValidTile(end_tile) && GetTileSlope(start_tile) == ComplementSlope(GetTileSlope(end_tile))));
Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE);
const auto build_tunnel_cmd = CmdBuildTunnel(start_tile, DC_AUTO | (build_tunnel ? DC_EXEC : DC_NONE), _public_road_type | (TRANSPORT_ROAD << 8), 0);
cur_company.Restore();
assert(!build_tunnel || build_tunnel_cmd.Succeeded());
assert(!build_tunnel || (IsTileType(start_tile, MP_TUNNELBRIDGE) && IsTileType(end_tile, MP_TUNNELBRIDGE)));
if (!build_tunnel_cmd.Succeeded()) return INVALID_TILE;
return end_tile;
}
static TileIndex BuildBridge(PathNode *current, TileIndex end_tile = INVALID_TILE, const bool build_bridge = false)
{
const TileIndex start_tile = current->node.tile;
// We are not building yet, so we still need to find the end_tile.
// We will only build a bridge if we need to cross a river, so first check for that.
if (!build_bridge) {
const DiagDirection direction = ReverseDiagDir(GetInclinedSlopeDirection(GetTileSlope(start_tile)));
TileIndex tile = start_tile + TileOffsByDiagDir(direction);
const bool is_over_water = IsValidTile(tile) && IsTileType(tile, MP_WATER) && IsSea(tile);
uint bridge_length = 0;
const uint bridge_length_limit = std::min<uint>(_settings_game.construction.max_bridge_length, is_over_water ? 20 : 10);
// We are not building yet, so we still need to find the end_tile.
for (;
IsValidTile(tile) &&
(bridge_length <= bridge_length_limit) &&
(GetTileZ(start_tile) < (GetTileZ(tile) + _settings_game.construction.max_bridge_height)) &&
(GetTileZ(tile) <= GetTileZ(start_tile));
tile += TileOffsByDiagDir(direction), bridge_length++) {
auto is_complementary_slope =
!IsSteepSlope(GetTileSlope(tile)) &&
!IsHalftileSlope(GetTileSlope(tile)) &&
GetTileSlope(start_tile) == ComplementSlope(GetTileSlope(tile));
// No super-short bridges and always ending up on a matching upwards slope.
if (!AreTilesAdjacent(start_tile, tile) && is_complementary_slope) {
end_tile = tile;
break;
}
}
if (!IsValidTile(end_tile)) return INVALID_TILE;
if (GetTileSlope(start_tile) != ComplementSlope(GetTileSlope(end_tile))) return INVALID_TILE;
if (!IsTileType(end_tile, MP_CLEAR) && !IsTileType(end_tile, MP_TREES) && !IsCoastTile(end_tile)) return INVALID_TILE;
}
assert(!build_bridge || (IsValidTile(end_tile) && GetTileSlope(start_tile) == ComplementSlope(GetTileSlope(end_tile))));
const uint length = GetTunnelBridgeLength(start_tile, end_tile);
std::vector<BridgeType> available_bridge_types;
for (BridgeType i = 0; i < MAX_BRIDGES; ++i) {
if (MayTownBuildBridgeType(i) && CheckBridgeAvailability(i, length).Succeeded()) {
available_bridge_types.push_back(i);
}
}
assert(!build_bridge || !available_bridge_types.empty());
if (available_bridge_types.empty()) return INVALID_TILE;
const auto bridge_type = available_bridge_types[build_bridge ? RandomRange((uint32_t)available_bridge_types.size()) : 0];
Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE);
const auto build_bridge_cmd = CmdBuildBridge(end_tile, DC_AUTO | (build_bridge ? DC_EXEC : DC_NONE), start_tile, bridge_type | (_public_road_type << 8) | (TRANSPORT_ROAD << 15));
cur_company.Restore();
assert(!build_bridge || build_bridge_cmd.Succeeded());
assert(!build_bridge || (IsTileType(start_tile, MP_TUNNELBRIDGE) && IsTileType(end_tile, MP_TUNNELBRIDGE)));
if (!build_bridge_cmd.Succeeded()) return INVALID_TILE;
return end_tile;
}
static TileIndex BuildRiverBridge(PathNode *current, const DiagDirection road_direction, TileIndex end_tile = INVALID_TILE, const bool build_bridge = false)
{
const TileIndex start_tile = current->node.tile;
const int start_tile_z = GetTileMaxZ(start_tile);
if (!build_bridge) {
// We are not building yet, so we still need to find the end_tile.
// We will only build a bridge if we need to cross a river, so first check for that.
TileIndex tile = start_tile + TileOffsByDiagDir(road_direction);
if (!IsWaterTile(tile) || !IsRiver(tile)) return INVALID_TILE;
// Now let's see if we can bridge it. But don't bridge anything more than 4 river tiles. Cities aren't allowed to, so public roads we are not either.
// Only bridges starting at slopes should be longer ones. The others look like crap when built this way. Players can build them but the map generator
// should not force that on them. This is just to bridge rivers, not to make long bridges.
for (;
IsValidTile(tile) &&
(GetTunnelBridgeLength(start_tile, tile) <= std::min(_settings_game.construction.max_bridge_length, (uint16_t)3)) &&
(start_tile_z < (GetTileZ(tile) + _settings_game.construction.max_bridge_height)) &&
(GetTileZ(tile) <= start_tile_z);
tile += TileOffsByDiagDir(road_direction)) {
if ((IsTileType(tile, MP_CLEAR) || IsTileType(tile, MP_TREES) || IsCoastTile(tile)) &&
GetTileZ(tile) <= start_tile_z &&
IsSufficientlyFlatSlope(GetTileSlope(tile))) {
end_tile = tile;
break;
}
}
if (!IsValidTile(end_tile)) return INVALID_TILE;
if (!IsTileType(end_tile, MP_CLEAR) && !IsTileType(end_tile, MP_TREES) && !IsCoastTile(end_tile)) return INVALID_TILE;
}
assert(!build_bridge || IsValidTile(end_tile));
const uint length = GetTunnelBridgeLength(start_tile, end_tile);
std::vector<BridgeType> available_bridge_types;
for (BridgeType i = 0; i < MAX_BRIDGES; ++i) {
if (MayTownBuildBridgeType(i) && CheckBridgeAvailability(i, length).Succeeded()) {
available_bridge_types.push_back(i);
}
}
const auto bridge_type = available_bridge_types[build_bridge ? RandomRange((uint32_t)available_bridge_types.size()) : 0];
Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE);
const auto build_bridge_cmd = CmdBuildBridge(end_tile, DC_AUTO | (build_bridge ? DC_EXEC : DC_NONE), start_tile, bridge_type | (_public_road_type << 8) | (TRANSPORT_ROAD << 15));
cur_company.Restore();
assert(!build_bridge || build_bridge_cmd.Succeeded());
assert(!build_bridge || (IsTileType(start_tile, MP_TUNNELBRIDGE) && IsTileType(end_tile, MP_TUNNELBRIDGE)));
if (!build_bridge_cmd.Succeeded()) return INVALID_TILE;
return end_tile;
}
static bool IsValidNeighbourOfPreviousTile(const TileIndex tile, const TileIndex previous_tile)
{
if (!IsValidTile(tile) || (tile == previous_tile)) return false;
const auto forward_direction = DiagdirBetweenTiles(previous_tile, tile);
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
if (GetOtherTunnelBridgeEnd(tile) == previous_tile) return true;
const auto tunnel_direction = GetTunnelBridgeDirection(tile);
return (tunnel_direction == forward_direction);
}
if (!IsTileType(tile, MP_CLEAR) && !IsTileType(tile, MP_TREES) && !IsTileType(tile, MP_ROAD) && !IsCoastTile(tile)) return false;
struct slope_desc {
int tile_z;
Slope tile_slope;
int z;
Slope slope;
};
auto get_slope_info = [](TileIndex t) -> slope_desc {
slope_desc desc;
std::tie(desc.tile_slope, desc.tile_z) = GetTileSlopeZ(t);
desc.z = desc.tile_z;
desc.slope = UpdateFoundationSlopeFromTileSlope(t, desc.tile_slope, desc.z);
if (desc.slope == desc.tile_slope && desc.slope != SLOPE_FLAT && HasBit(VALID_LEVEL_CROSSING_SLOPES, desc.slope)) {
/* Synthesise a trivial flattening foundation */
desc.slope = SLOPE_FLAT;
desc.z++;
}
return desc;
};
const slope_desc sd = get_slope_info(tile);
if (IsSteepSlope(sd.slope)) return false;
const slope_desc previous_sd = get_slope_info(previous_tile);
auto is_non_trivial_foundation = [](const slope_desc &sd) -> bool {
return sd.slope != sd.tile_slope && !HasBit(VALID_LEVEL_CROSSING_SLOPES, sd.tile_slope);
};
/* Check non-trivial foundations (those which aren't 3 corners raised or 2 opposite corners raised -> flat) */
if (is_non_trivial_foundation(sd) || is_non_trivial_foundation(previous_sd)) {
static const Corner test_corners[16] = {
// DIAGDIR_NE
CORNER_N, CORNER_W,
CORNER_E, CORNER_S,
// DIAGDIR_SE
CORNER_S, CORNER_W,
CORNER_E, CORNER_N,
// DIAGDIR_SW
CORNER_S, CORNER_E,
CORNER_W, CORNER_N,
// DIAGDIR_NW
CORNER_N, CORNER_E,
CORNER_W, CORNER_S
};
const Corner *corners = test_corners + (forward_direction * 4);
return ((previous_sd.z + GetSlopeZInCorner(previous_sd.slope, corners[0])) == (sd.z + GetSlopeZInCorner(sd.slope, corners[1]))) &&
((previous_sd.z + GetSlopeZInCorner(previous_sd.slope, corners[2])) == (sd.z + GetSlopeZInCorner(sd.slope, corners[3])));
}
if (IsInclinedSlope(sd.slope)) {
const auto slope_direction = GetInclinedSlopeDirection(sd.slope);
if (slope_direction != forward_direction && ReverseDiagDir(slope_direction) != forward_direction) {
return false;
}
} else if (!HasBit(VALID_LEVEL_CROSSING_SLOPES, sd.slope)) {
return false;
} else {
/* Check whether the previous tile was an inclined slope, and whether we are leaving the previous tile from a valid direction */
if (sd.tile_slope != SLOPE_FLAT) {
if (IsInclinedSlope(previous_sd.slope)) {
const DiagDirection slope_direction = GetInclinedSlopeDirection(previous_sd.slope);
if (slope_direction != forward_direction && ReverseDiagDir(slope_direction) != forward_direction) return false;
}
}
}
return true;
}
static bool AreParallelOverlapping(const Point &start_a, const Point &end_a, const Point &start_b, const Point &end_b)
{
// Check parallel overlaps.
if (start_a.x == end_a.x && start_b.x == end_b.x && start_a.x == start_b.x) {
if ((start_a.y <= start_b.y && end_a.y >= start_b.y) || (start_a.y >= start_b.y && end_a.y <= start_b.y) ||
(start_a.y <= end_b.y && end_a.y >= end_b.y) || (start_a.y >= end_b.y && end_a.y <= end_b.y)) {
return true;
}
}
if (start_a.y == end_a.y && start_b.y == end_b.y && start_a.y == start_b.y) {
if ((start_a.x <= start_b.x && end_a.x >= start_b.x) || (start_a.x >= start_b.x && end_a.x <= start_b.x) ||
(start_a.x <= end_b.x && end_a.x >= end_b.x) || (start_a.x >= end_b.x && end_a.x <= end_b.x)) {
return true;
}
}
return false;
}
static bool AreIntersecting(const Point &start_a, const Point &end_a, const Point &start_b, const Point &end_b)
{
if (start_a.x == end_a.x && start_b.y == end_b.y) {
if ((start_b.x <= start_a.x && end_b.x >= start_a.x) || (start_b.x >= start_a.x && end_b.x <= start_a.x)) {
if ((start_a.y <= start_b.y && end_a.y >= start_b.y) || (start_a.y >= start_b.y && end_a.y <= start_b.y)) {
return true;
}
}
}
if (start_a.y == end_a.y && start_b.x == end_b.x) {
if ((start_b.y <= start_a.y && end_b.y >= start_a.y) || (start_b.y >= start_a.y && end_b.y <= start_a.y)) {
if ((start_a.x <= start_b.x && end_a.x >= start_b.x) || (start_a.x >= start_b.x && end_a.x <= start_b.x)) {
return true;
}
}
}
return false;
}
static bool IsBlockedByPreviousBridgeOrTunnel(OpenListNode *current, TileIndex start_tile, TileIndex end_tile)
{
PathNode* start = &current->path;
PathNode* end = current->path.parent;
Point start_b {};
start_b.x = TileX(start_tile);
start_b.y = TileY(start_tile);
Point end_b {};
end_b.x = TileX(end_tile);
end_b.y = TileY(end_tile);
while (end != nullptr) {
Point start_a {};
start_a.x = TileX(start->node.tile);
start_a.y = TileY(start->node.tile);
Point end_a {};
end_a.x = TileX(end->node.tile);
end_a.y = TileY(end->node.tile);
if (!AreTilesAdjacent(start->node.tile, end->node.tile) &&
(AreIntersecting(start_a, end_a, start_b, end_b) || AreParallelOverlapping(start_a, end_a, start_b, end_b))) {
return true;
}
start = end;
end = start->parent;
}
return false;
}
/** AyStar callback for getting the neighbouring nodes of the given node. */
static void PublicRoad_GetNeighbours(AyStar *aystar, OpenListNode *current)
{
const auto current_tile = current->path.node.tile;
const auto previous_tile = current->path.parent != nullptr ? current->path.parent->node.tile : INVALID_TILE;
const auto forward_direction = DiagdirBetweenTiles(previous_tile, current_tile);
aystar->num_neighbours = 0;
// Check if we just went through a tunnel or a bridge.
if (IsValidTile(previous_tile) && !AreTilesAdjacent(current_tile, previous_tile)) {
// We went through a tunnel or bridge, this limits our options to proceed to only forward.
const TileIndex next_tile = current_tile + TileOffsByDiagDir(forward_direction);
if (IsValidNeighbourOfPreviousTile(next_tile, current_tile)) {
aystar->neighbours[aystar->num_neighbours].tile = next_tile;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
}
} else if (IsTileType(current_tile, MP_TUNNELBRIDGE)) {
// Handle existing tunnels and bridges
const auto tunnel_bridge_end = GetOtherTunnelBridgeEnd(current_tile);
aystar->neighbours[aystar->num_neighbours].tile = tunnel_bridge_end;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
} else {
// Handle regular neighbors.
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
const auto neighbour = current_tile + TileOffsByDiagDir(d);
if (neighbour == previous_tile) {
continue;
}
if (IsValidNeighbourOfPreviousTile(neighbour, current_tile)) {
aystar->neighbours[aystar->num_neighbours].tile = neighbour;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
}
}
// Check if we can turn this into a tunnel or a bridge.
if (IsValidTile(previous_tile)) {
const Slope current_tile_slope = GetTileSlope(current_tile);
if (IsUpwardsSlope(current_tile_slope, forward_direction)) {
const TileIndex tunnel_end = BuildTunnel(&current->path);
if (IsValidTile(tunnel_end)) {
const Slope tunnel_end_slope = GetTileSlope(tunnel_end);
if (!IsBlockedByPreviousBridgeOrTunnel(current, current_tile, tunnel_end) &&
!IsSteepSlope(tunnel_end_slope) &&
!IsHalftileSlope(tunnel_end_slope) &&
(tunnel_end_slope == ComplementSlope(current_tile_slope))) {
assert(IsValidDiagDirection(DiagdirBetweenTiles(current_tile, tunnel_end)));
aystar->neighbours[aystar->num_neighbours].tile = tunnel_end;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
}
}
} else if (IsDownwardsSlope(current_tile_slope, forward_direction)) {
const TileIndex bridge_end = BuildBridge(&current->path, forward_direction);
if (IsValidTile(bridge_end)) {
const Slope bridge_end_slope = GetTileSlope(bridge_end);
if (!IsBlockedByPreviousBridgeOrTunnel(current, current_tile, bridge_end) &&
!IsSteepSlope(bridge_end_slope) &&
!IsHalftileSlope(bridge_end_slope) &&
(bridge_end_slope == ComplementSlope(current_tile_slope))) {
assert(IsValidDiagDirection(DiagdirBetweenTiles(current_tile, bridge_end)));
aystar->neighbours[aystar->num_neighbours].tile = bridge_end;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
}
}
} else if (IsSufficientlyFlatSlope(current_tile_slope)) {
// Check if we could bridge a river from a flat tile. Not looking pretty on the map but you gotta do what you gotta do.
const auto bridge_end = BuildRiverBridge(&current->path, forward_direction);
assert(!IsValidTile(bridge_end) || IsSufficientlyFlatSlope(GetTileSlope(bridge_end)));
if (IsValidTile(bridge_end) &&
!IsBlockedByPreviousBridgeOrTunnel(current, current_tile, bridge_end)) {
assert(IsValidDiagDirection(DiagdirBetweenTiles(current_tile, bridge_end)));
aystar->neighbours[aystar->num_neighbours].tile = bridge_end;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
}
}
}
}
}
/** AyStar callback for checking whether we reached our destination. */
static int32_t PublicRoad_EndNodeCheck(const AyStar *aystar, const OpenListNode *current)
{
return current->path.node.tile == static_cast<TileIndex>(reinterpret_cast<uintptr_t>(aystar->user_target)) ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE;
}
/** AyStar callback when an route has been found. */
static void PublicRoad_FoundEndNode(AyStar *aystar, OpenListNode *current)
{
PathNode* child = nullptr;
for (PathNode *path = &current->path; path != nullptr; path = path->parent) {
const TileIndex tile = path->node.tile;
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
// Just follow the path; infrastructure is already in place.
continue;
}
if (path->parent == nullptr || AreTilesAdjacent(tile, path->parent->node.tile)) {
RoadBits road_bits = ROAD_NONE;
if (child != nullptr) {
const TileIndex tile2 = child->node.tile;
road_bits |= DiagDirToRoadBits(DiagdirBetweenTiles(tile, tile2));
}
if (path->parent != nullptr) {
const TileIndex tile2 = path->parent->node.tile;
road_bits |= DiagDirToRoadBits(DiagdirBetweenTiles(tile, tile2));
}
if (child != nullptr || path->parent != nullptr) {
// Check if we need to build anything.
bool need_to_build_road = true;
if (IsNormalRoadTile(tile)) {
const RoadBits existing_bits = GetRoadBits(tile, RTT_ROAD);
CLRBITS(road_bits, existing_bits);
if (road_bits == ROAD_NONE) need_to_build_road = false;
} else if (MayHaveRoad(tile)) {
/* Tile already has road which can't be modified: level crossings, depots, drive-through stops, etc */
need_to_build_road = false;
}
// If it is already a road and has the right bits, we are good. Otherwise build the needed ones.
if (need_to_build_road) {
Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE);
CmdBuildRoad(tile, DC_EXEC, _public_road_type << 4 | road_bits, 0);
cur_company.Restore();
}
}
} else {
// We only get here if we have a parent and we're not adjacent to it. River/Tunnel time!
const DiagDirection road_direction = DiagdirBetweenTiles(tile, path->parent->node.tile);
[[maybe_unused]] auto end_tile = INVALID_TILE;
const Slope tile_slope = GetTileSlope(tile);
if (IsUpwardsSlope(tile_slope, road_direction)) {
end_tile = BuildTunnel(path, path->parent->node.tile, true);
assert(IsValidTile(end_tile) && IsDownwardsSlope(GetTileSlope(end_tile), road_direction));
} else if (IsDownwardsSlope(tile_slope, road_direction)) {
// Provide the function with the end tile, since we already know it, but still check the result.
end_tile = BuildBridge(path, path->parent->node.tile, true);
assert(IsValidTile(end_tile) && IsUpwardsSlope(GetTileSlope(end_tile), road_direction));
} else {
// River bridge is the last possibility.
assert(IsSufficientlyFlatSlope(tile_slope));
end_tile = BuildRiverBridge(path, road_direction, path->parent->node.tile, true);
assert(IsValidTile(end_tile) && IsSufficientlyFlatSlope(GetTileSlope(end_tile)));
}
}
child = path;
}
}
static const int32_t BASE_COST_PER_TILE = 1; ///< Cost for existing road or tunnel/bridge.
static const int32_t COST_FOR_NEW_ROAD = 10; ///< Cost for building a new road.
static const int32_t COST_FOR_SLOPE = 50; ///< Additional cost if the road heads up or down a slope.
/** AyStar callback for getting the cost of the current node. */
static int32_t PublicRoad_CalculateG(AyStar *, AyStarNode *current, OpenListNode *parent)
{
int32_t cost = 0;
const int32_t distance = DistanceManhattan(parent->path.node.tile, current->tile);
if (IsTileType(current->tile, MP_ROAD) || IsTileType(current->tile, MP_TUNNELBRIDGE)) {
cost += distance * BASE_COST_PER_TILE;
} else {
cost += distance * COST_FOR_NEW_ROAD;
if (GetTileMaxZ(parent->path.node.tile) != GetTileMaxZ(current->tile)) {
cost += COST_FOR_SLOPE;
auto current_node = &parent->path;
auto parent_node = parent->path.parent;
// Force the pathfinder to build serpentine roads by punishing every slope in the last couple of tiles.
for (int i = 0; i < 3; ++i) {
if (current_node == nullptr || parent_node == nullptr) {
break;
}
if (GetTileMaxZ(current_node->node.tile) != GetTileMaxZ(parent_node->node.tile)) {
cost += COST_FOR_SLOPE;
}
current_node = parent_node;
parent_node = current_node->parent;
}
}
if (distance > 1) {
// We are planning to build a bridge or tunnel. Make that a bit more expensive.
cost += 6 * COST_FOR_SLOPE;
cost += distance * 2 * COST_FOR_NEW_ROAD;
}
}
if (_settings_game.game_creation.build_public_roads == PRC_AVOID_CURVES &&
parent->path.parent != nullptr &&
DiagdirBetweenTiles(parent->path.parent->node.tile, parent->path.node.tile) != DiagdirBetweenTiles(parent->path.node.tile, current->tile)) {
cost += 1;
}
return cost;
}
/** AyStar callback for getting the estimated cost to the destination. */
static int32_t PublicRoad_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *parent)
{
return DistanceManhattan(static_cast<TileIndex>(reinterpret_cast<uintptr_t>(aystar->user_target)), current->tile) * BASE_COST_PER_TILE;
}
static AyStar PublicRoadAyStar()
{
AyStar finder {};
finder.CalculateG = PublicRoad_CalculateG;
finder.CalculateH = PublicRoad_CalculateH;
finder.GetNeighbours = PublicRoad_GetNeighbours;
finder.EndNodeCheck = PublicRoad_EndNodeCheck;
finder.FoundEndNode = PublicRoad_FoundEndNode;
finder.max_search_nodes = 1 << 20;
finder.Init(1 << _public_road_hash_size);
return finder;
}
static bool PublicRoadFindPath(AyStar& finder, const TileIndex from, TileIndex to)
{
finder.user_target = reinterpret_cast<void *>(static_cast<uintptr_t>(to));
AyStarNode start {};
start.tile = from;
start.direction = INVALID_TRACKDIR;
finder.AddStartNode(&start, 0);
int result = AYSTAR_STILL_BUSY;
while (result == AYSTAR_STILL_BUSY) {
result = finder.Main();
}
const bool found_path = (result == AYSTAR_FOUND_END_NODE);
finder.Clear();
return found_path;
}
struct TownNetwork
{
uint failures_to_connect {};
std::vector<TileIndex> towns;
};
void PostProcessNetworks(AyStar &finder, const std::vector<std::unique_ptr<TownNetwork>> &town_networks)
{
for (const auto &network : town_networks) {
if (network->towns.size() <= 3) {
continue;
}
std::vector towns(network->towns);
for (auto town_a : network->towns) {
std::partial_sort(towns.begin(), towns.begin() + 4, towns.end(), [&](const TileIndex& a, const TileIndex& b) { return DistanceManhattan(a, town_a) < DistanceManhattan(b, town_a); });
TileIndex second_closest_town = towns[2];
TileIndex third_closest_town = towns[3];
PublicRoadFindPath(finder, town_a, second_closest_town);
PublicRoadFindPath(finder, town_a, third_closest_town);
IncreaseGeneratingWorldProgress(GWP_PUBLIC_ROADS);
}
}
}
/**
* Build the public road network connecting towns using AyStar.
*/
void GeneratePublicRoads()
{
if (_settings_game.game_creation.build_public_roads == PRC_NONE) return;
std::vector<TileIndex> towns;
towns.clear();
{
for (const Town *town : Town::Iterate()) {
towns.push_back(town->xy);
}
}
if (towns.empty()) {
return;
}
SetGeneratingWorldProgress(GWP_PUBLIC_ROADS, uint(towns.size() * 2));
// Create a list of networks which also contain a value indicating how many times we failed to connect to them.
std::vector<std::unique_ptr<TownNetwork>> networks;
robin_hood::unordered_flat_map<TileIndex, TownNetwork *> town_to_network_map;
TileIndex main_town;
{
auto main_town_iter = std::max_element(towns.begin(), towns.end(), [&](TileIndex a, TileIndex b) { return DistanceFromEdge(a) < DistanceFromEdge(b); });
main_town = *main_town_iter;
/* Unordered remove item */
*main_town_iter = towns.back();
towns.pop_back();
}
_public_road_type = GetTownRoadType();
robin_hood::unordered_flat_set<TileIndex> checked_towns;
std::unique_ptr<TownNetwork> new_main_network = std::make_unique<TownNetwork>();
TownNetwork *main_network = new_main_network.get();
networks.push_back(std::move(new_main_network));
main_network->towns.push_back(main_town);
main_network->failures_to_connect = 0;
town_to_network_map[main_town] = main_network;
IncreaseGeneratingWorldProgress(GWP_PUBLIC_ROADS);
auto town_network_distance = [](const TileIndex town, const TownNetwork *network) -> uint {
uint best = UINT_MAX;
for (TileIndex t : network->towns) {
best = std::min<uint>(best, DistanceManhattan(t, town));
}
return best;
};
std::sort(towns.begin(), towns.end(), [&](TileIndex a, TileIndex b) { return DistanceManhattan(a, main_town) < DistanceManhattan(b, main_town); });
AyStar finder = PublicRoadAyStar();
for (auto start_town : towns) {
// Check if we can connect to any of the networks.
checked_towns.clear();
auto reachable_from_town = town_to_network_map.find(start_town);
bool found_path = false;
if (reachable_from_town != town_to_network_map.end()) {
TownNetwork *reachable_network = reachable_from_town->second;
const TileIndex end_town = *std::min_element(reachable_network->towns.begin(), reachable_network->towns.end(), [&](TileIndex a, TileIndex b) { return DistanceManhattan(start_town, a) < DistanceManhattan(start_town, b); });
checked_towns.insert(end_town);
found_path = PublicRoadFindPath(finder, start_town, end_town);
if (found_path) {
reachable_network->towns.push_back(start_town);
if (reachable_network->failures_to_connect > 0) {
reachable_network->failures_to_connect--;
}
} else {
town_to_network_map.erase(reachable_from_town);
reachable_network->failures_to_connect++;
}
}
if (!found_path) {
std::vector<std::unique_ptr<TownNetwork>>::iterator networks_end;
if (networks.size() > 5) {
networks_end = networks.begin() + 5;
} else {
networks_end = networks.end();
}
std::partial_sort(networks.begin(), networks_end, networks.end(), [&](const std::unique_ptr<TownNetwork> &a, const std::unique_ptr<TownNetwork> &b) {
return town_network_distance(start_town, a.get()) < town_network_distance(start_town, b.get());
});
auto can_reach = [&](const std::unique_ptr<TownNetwork> &network) {
if (reachable_from_town != town_to_network_map.end() && network.get() == reachable_from_town->second) {
return false;
}
// Try to connect to the town in the network that is closest to us.
// If we can't connect to that one, we can't connect to any of them since they are all interconnected.
const TileIndex end_town = *std::min_element(network->towns.begin(), network->towns.end(), [&](TileIndex a, TileIndex b) { return DistanceManhattan(start_town, a) < DistanceManhattan(start_town, b); });
if (checked_towns.find(end_town) != checked_towns.end()) {
return false;
}
checked_towns.insert(end_town);
found_path = PublicRoadFindPath(finder, start_town, end_town);
if (found_path) {
network->towns.push_back(start_town);
if (network->failures_to_connect > 0) {
network->failures_to_connect--;
}
town_to_network_map[start_town] = network.get();
} else {
network->failures_to_connect++;
}
return found_path;
};
std::sort(networks.begin(), networks_end, [&](const std::unique_ptr<TownNetwork> &a, const std::unique_ptr<TownNetwork> &b) {
return a->failures_to_connect < b->failures_to_connect;
});
if (!std::any_of(networks.begin(), networks_end, can_reach)) {
// We failed so many networks, we are a separate network. Let future towns try to connect to us.
std::unique_ptr<TownNetwork> new_network = std::make_unique<TownNetwork>();
new_network->towns.push_back(start_town);
new_network->failures_to_connect = 0;
// We basically failed to connect to this many towns.
int towns_already_in_networks = std::accumulate(networks.begin(), networks.end(), 0, [&](int accumulator, const std::unique_ptr<TownNetwork> &network) {
return accumulator + static_cast<int>(network->towns.size());
});
new_network->failures_to_connect += towns_already_in_networks;
town_to_network_map[start_town] = new_network.get();
networks.push_back(std::move(new_network));
}
}
IncreaseGeneratingWorldProgress(GWP_PUBLIC_ROADS);
}
PostProcessNetworks(finder, networks);
finder.Free();
}
/* ========================================================================= */
/* END PUBLIC ROADS */
/* ========================================================================= */