(svn r19245) -Codechange: apply coding style to binary heap (skidd13)

pull/155/head
yexo 15 years ago
parent f8a67c21e4
commit f6ea57d2c4

@ -16,7 +16,7 @@
#define BINARYHEAP_CHECK 0 #define BINARYHEAP_CHECK 0
#if BINARYHEAP_CHECK #if BINARYHEAP_CHECK
#define CHECK_CONSISTY() CheckConsistency() #define CHECK_CONSISTY() this->CheckConsistency()
#else #else
#define CHECK_CONSISTY() ; #define CHECK_CONSISTY() ;
#endif #endif
@ -51,14 +51,14 @@ public:
: items(0) : items(0)
, capacity(max_items) , capacity(max_items)
{ {
data = MallocT<T*>(max_items + 1); this->data = MallocT<T *>(max_items + 1);
} }
~CBinaryHeapT() ~CBinaryHeapT()
{ {
Clear(); this->Clear();
free(data); free(this->data);
data = NULL; this->data = NULL;
} }
protected: protected:
@ -70,17 +70,17 @@ protected:
uint child = gap * 2; // first child is at [parent * 2] uint child = gap * 2; // first child is at [parent * 2]
/* while children are valid */ /* while children are valid */
while (child <= items) { while (child <= this->items) {
/* choose the smaller child */ /* choose the smaller child */
if (child < items && *data[child + 1] < *data[child]) if (child < this->items && *this->data[child + 1] < *this->data[child])
child++; child++;
/* is it smaller than our parent? */ /* is it smaller than our parent? */
if (!(*data[child] < *item)) { if (!(*this->data[child] < *item)) {
/* the smaller child is still bigger or same as parent => we are done */ /* the smaller child is still bigger or same as parent => we are done */
break; break;
} }
/* if smaller child is smaller than parent, it will become new parent */ /* if smaller child is smaller than parent, it will become new parent */
data[gap] = data[child]; this->data[gap] = this->data[child];
gap = child; gap = child;
/* where do we have our new children? */ /* where do we have our new children? */
child = gap * 2; child = gap * 2;
@ -98,11 +98,11 @@ protected:
while (gap > 1) { while (gap > 1) {
/* compare [gap] with its parent */ /* compare [gap] with its parent */
parent = gap / 2; parent = gap / 2;
if (!(*item <*data[parent])) { if (!(*item < *this->data[parent])) {
/* we don't need to continue upstairs */ /* we don't need to continue upstairs */
break; break;
} }
data[gap] = data[parent]; this->data[gap] = this->data[parent];
gap = parent; gap = parent;
} }
return gap; return gap;
@ -112,9 +112,9 @@ protected:
/** verifies the heap consistency (added during first YAPF debug phase) */ /** verifies the heap consistency (added during first YAPF debug phase) */
FORCEINLINE void CheckConsistency() FORCEINLINE void CheckConsistency()
{ {
for (uint child = 2; child <= items; child++) { for (uint child = 2; child <= this->items; child++) {
uint parent = child / 2; uint parent = child / 2;
assert(!(*data[child] < *data[parent])); assert(!(*this->data[child] < *this->data[parent]));
} }
} }
#endif #endif
@ -122,57 +122,57 @@ protected:
public: public:
/** Return the number of items stored in the priority queue. /** Return the number of items stored in the priority queue.
* @return number of items in the queue */ * @return number of items in the queue */
FORCEINLINE uint Size() const { return items; } FORCEINLINE uint Size() const { return this->items; }
/** Test if the priority queue is empty. /** Test if the priority queue is empty.
* @return true if empty */ * @return true if empty */
FORCEINLINE bool IsEmpty() const { return items == 0; } FORCEINLINE bool IsEmpty() const { return this->items == 0; }
/** Test if the priority queue is full. /** Test if the priority queue is full.
* @return true if full. */ * @return true if full. */
FORCEINLINE bool IsFull() const { return items >= capacity; } FORCEINLINE bool IsFull() const { return this->items >= this->capacity; }
/** Find the smallest item in the priority queue. /** Find the smallest item in the priority queue.
* Return the smallest item, or throw assert if empty. */ * Return the smallest item, or throw assert if empty. */
FORCEINLINE T *Begin() FORCEINLINE T *Begin()
{ {
assert(!IsEmpty()); assert(!this->IsEmpty());
return data[1]; return this->data[1];
} }
FORCEINLINE T *End() FORCEINLINE T *End()
{ {
return data[1 + items]; return this->data[1 + this->items];
} }
/** Insert new item into the priority queue, maintaining heap order. /** Insert new item into the priority queue, maintaining heap order.
* @return false if the queue is full. */ * @return false if the queue is full. */
FORCEINLINE void Push(T *new_item) FORCEINLINE void Push(T *new_item)
{ {
if (IsFull()) { if (this->IsFull()) {
capacity *= 2; this->capacity *= 2;
data = ReallocT<T*>(data, capacity + 1); this->data = ReallocT<T*>(this->data, this->capacity + 1);
} }
/* make place for new item */ /* make place for new item */
uint gap = HeapifyUp(++items, new_item); uint gap = this->HeapifyUp(++items, new_item);
data[gap] = new_item; this->data[gap] = new_item;
CHECK_CONSISTY(); CHECK_CONSISTY();
} }
/** Remove and return the smallest item from the priority queue. */ /** Remove and return the smallest item from the priority queue. */
FORCEINLINE T *Shift() FORCEINLINE T *Shift()
{ {
assert(!IsEmpty()); assert(!this->IsEmpty());
T *first = Begin(); T *first = this->Begin();
items--; this->items--;
/* at index 1 we have a gap now */ /* at index 1 we have a gap now */
T *last = End(); T *last = this->End();
uint gap = HeapifyDown(1, last); uint gap = this->HeapifyDown(1, last);
/* move last item to the proper place */ /* move last item to the proper place */
if (!IsEmpty()) data[gap] = last; if (!this->IsEmpty()) this->data[gap] = last;
CHECK_CONSISTY(); CHECK_CONSISTY();
return first; return first;
@ -181,31 +181,31 @@ public:
/** Remove item specified by index */ /** Remove item specified by index */
FORCEINLINE void RemoveByIdx(uint index) FORCEINLINE void RemoveByIdx(uint index)
{ {
if (index < items) { if (index < this->items) {
assert(index != 0); assert(index != 0);
items--; this->items--;
/* at position index we have a gap now */ /* at position index we have a gap now */
T *last = End(); T *last = this->End();
/* Fix binary tree up and downwards */ /* Fix binary tree up and downwards */
uint gap = HeapifyUp(index, last); uint gap = this->HeapifyUp(index, last);
gap = HeapifyDown(gap, last); gap = this->HeapifyDown(gap, last);
/* move last item to the proper place */ /* move last item to the proper place */
if (!IsEmpty()) data[gap] = last; if (!this->IsEmpty()) this->data[gap] = last;
} else { } else {
assert(index == items); assert(index == this->items);
items--; this->items--;
} }
CHECK_CONSISTY(); CHECK_CONSISTY();
} }
/** return index of the item that matches (using &item1 == &item2) the given item. */ /** return index of the item that matches (using &item1 == &item2) the given item. */
FORCEINLINE uint FindLinear(const T& item) const FORCEINLINE uint FindLinear(const T &item) const
{ {
if (IsEmpty()) return 0; if (this->IsEmpty()) return 0;
for (T **ppI = data + 1, **ppLast = ppI + items; ppI <= ppLast; ppI++) { for (T **ppI = this->data + 1, **ppLast = ppI + this->items; ppI <= ppLast; ppI++) {
if (*ppI == &item) { if (*ppI == &item) {
return ppI - data; return ppI - this->data;
} }
} }
return 0; return 0;
@ -213,7 +213,7 @@ public:
/** Make the priority queue empty. /** Make the priority queue empty.
* All remaining items will remain untouched. */ * All remaining items will remain untouched. */
FORCEINLINE void Clear() { items = 0; } FORCEINLINE void Clear() { this->items = 0; }
}; };
#endif /* BINARYHEAP_HPP */ #endif /* BINARYHEAP_HPP */

Loading…
Cancel
Save