(svn r108) -Fix: anon-union problems on GCC2 compilers

pull/155/head
truelight 20 years ago
parent a770903df7
commit 99253905bb

@ -6,31 +6,31 @@ void Stack_Clear(Queue* q, bool free_values)
{
uint i;
if (free_values)
for (i=0;i<q->stack.size;i++)
free(q->stack.elements[i]);
q->stack.size = 0;
for (i=0;i<q->data.stack.size;i++)
free(q->data.stack.elements[i]);
q->data.stack.size = 0;
}
void Stack_Free(Queue* q, bool free_values)
{
q->clear(q, free_values);
free(q->stack.elements);
free(q->data.stack.elements);
if (q->freeq)
free(q);
}
bool Stack_Push(Queue* q, void* item, int priority) {
if (q->stack.size == q->stack.max_size)
if (q->data.stack.size == q->data.stack.max_size)
return false;
q->stack.elements[q->stack.size++] = item;
q->data.stack.elements[q->data.stack.size++] = item;
return true;
}
void* Stack_Pop(Queue* q) {
void* result;
if (q->stack.size == 0)
if (q->data.stack.size == 0)
return NULL;
result = q->stack.elements[--q->stack.size];
result = q->data.stack.elements[--q->data.stack.size];
return result;
}
@ -46,9 +46,9 @@ Queue* init_stack(Queue* q, uint max_size) {
q->del = Stack_Delete;
q->clear = Stack_Clear;
q->free = Stack_Free;
q->stack.max_size = max_size;
q->stack.size = 0;
q->stack.elements = malloc(max_size * sizeof(void*));
q->data.stack.max_size = max_size;
q->data.stack.size = 0;
q->data.stack.elements = malloc(max_size * sizeof(void*));
q->freeq = false;
return q;
}
@ -69,43 +69,43 @@ void Fifo_Clear(Queue* q, bool free_values)
{
uint head, tail;
if (free_values) {
head = q->fifo.head;
tail = q->fifo.tail; /* cache for speed */
head = q->data.fifo.head;
tail = q->data.fifo.tail; /* cache for speed */
while (head != tail) {
free(q->fifo.elements[tail]);
tail = (tail + 1) % q->fifo.max_size;
free(q->data.fifo.elements[tail]);
tail = (tail + 1) % q->data.fifo.max_size;
}
}
q->fifo.head = q->fifo.tail = 0;
q->data.fifo.head = q->data.fifo.tail = 0;
}
void Fifo_Free(Queue* q, bool free_values)
{
q->clear(q, free_values);
free(q->fifo.elements);
free(q->data.fifo.elements);
if (q->freeq)
free(q);
}
bool Fifo_Push(Queue* q, void* item, int priority) {
uint next = (q->fifo.head + 1) % q->fifo.max_size;
if (next == q->fifo.tail)
uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
if (next == q->data.fifo.tail)
return false;
q->fifo.elements[q->fifo.head] = item;
q->data.fifo.elements[q->data.fifo.head] = item;
q->fifo.head = next;
q->data.fifo.head = next;
return true;
}
void* Fifo_Pop(Queue* q) {
void* result;
if (q->fifo.head == q->fifo.tail)
if (q->data.fifo.head == q->data.fifo.tail)
return NULL;
result = q->fifo.elements[q->fifo.tail];
result = q->data.fifo.elements[q->data.fifo.tail];
q->fifo.tail = (q->fifo.tail + 1) % q->fifo.max_size;
q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
return result;
}
@ -120,10 +120,10 @@ Queue* init_fifo(Queue* q, uint max_size) {
q->del = Fifo_Delete;
q->clear = Fifo_Clear;
q->free = Fifo_Free;
q->fifo.max_size = max_size;
q->fifo.head = 0;
q->fifo.tail = 0;
q->fifo.elements = malloc(max_size * sizeof(void*));
q->data.fifo.max_size = max_size;
q->data.fifo.head = 0;
q->data.fifo.tail = 0;
q->data.fifo.elements = malloc(max_size * sizeof(void*));
q->freeq = false;
return q;
}
@ -142,7 +142,7 @@ Queue* new_Fifo(uint max_size)
*/
void InsSort_Clear(Queue* q, bool free_values) {
InsSortNode* node = q->inssort.first;
InsSortNode* node = q->data.inssort.first;
InsSortNode* prev;
while (node != NULL) {
if (free_values)
@ -152,7 +152,7 @@ void InsSort_Clear(Queue* q, bool free_values) {
free(prev);
}
q->inssort.first = NULL;
q->data.inssort.first = NULL;
}
void InsSort_Free(Queue* q, bool free_values)
@ -167,11 +167,11 @@ bool InsSort_Push(Queue* q, void* item, int priority) {
if (newnode == NULL) return false;
newnode->item = item;
newnode->priority = priority;
if (q->inssort.first == NULL || q->inssort.first->priority >= priority) {
newnode->next = q->inssort.first;
q->inssort.first = newnode;
if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) {
newnode->next = q->data.inssort.first;
q->data.inssort.first = newnode;
} else {
InsSortNode* node = q->inssort.first;
InsSortNode* node = q->data.inssort.first;
while( node != NULL ) {
if (node->next == NULL || node->next->priority >= priority) {
newnode->next = node->next;
@ -185,14 +185,14 @@ bool InsSort_Push(Queue* q, void* item, int priority) {
}
void* InsSort_Pop(Queue* q) {
InsSortNode* node = q->inssort.first;
InsSortNode* node = q->data.inssort.first;
void* result;
if (node == NULL)
return NULL;
result = node->item;
q->inssort.first = q->inssort.first->next;
if (q->inssort.first)
assert(q->inssort.first->priority >= node->priority);
q->data.inssort.first = q->data.inssort.first->next;
if (q->data.inssort.first)
assert(q->data.inssort.first->priority >= node->priority);
free(node);
return result;
}
@ -208,7 +208,7 @@ void init_InsSort(Queue* q) {
q->del = InsSort_Delete;
q->clear = InsSort_Clear;
q->free = InsSort_Free;
q->inssort.first = NULL;
q->data.inssort.first = NULL;
q->freeq = false;
}
@ -231,16 +231,16 @@ Queue* new_InsSort() {
// To make our life easy, we make the next define
// Because Binary Heaps works with array from 1 to n,
// and C with array from 0 to n-1, and we don't like typing
// q->binaryheap.elements[i-1] every time, we use this define.
#define BIN_HEAP_ARR(i) q->binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
// q->data.binaryheap.elements[i-1] every time, we use this define.
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
void BinaryHeap_Clear(Queue* q, bool free_values)
{
/* Free all items if needed and free all but the first blocks of
* memory */
uint i,j;
for (i=0;i<q->binaryheap.blocks;i++) {
if (q->binaryheap.elements[i] == NULL) {
for (i=0;i<q->data.binaryheap.blocks;i++) {
if (q->data.binaryheap.elements[i] == NULL) {
/* No more allocated blocks */
break;
}
@ -248,29 +248,29 @@ void BinaryHeap_Clear(Queue* q, bool free_values)
if (free_values)
for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
/* For every element in the block */
if ((q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
&& (q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
&& (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
break; /* We're past the last element */
free(q->binaryheap.elements[i][j].item);
free(q->data.binaryheap.elements[i][j].item);
}
if (i != 0) {
/* Leave the first block of memory alone */
free(q->binaryheap.elements[i]);
q->binaryheap.elements[i] = NULL;
free(q->data.binaryheap.elements[i]);
q->data.binaryheap.elements[i] = NULL;
}
}
q->binaryheap.size = 0;
q->binaryheap.blocks = 1;
q->data.binaryheap.size = 0;
q->data.binaryheap.blocks = 1;
}
void BinaryHeap_Free(Queue* q, bool free_values)
{
uint i;
q->clear(q, free_values);
for (i=0;i<q->binaryheap.blocks;i++) {
if (q->binaryheap.elements[i] == NULL)
for (i=0;i<q->data.binaryheap.blocks;i++) {
if (q->data.binaryheap.elements[i] == NULL)
break;
free(q->binaryheap.elements[i]);
free(q->data.binaryheap.elements[i]);
}
if (q->freeq)
free(q);
@ -278,33 +278,33 @@ void BinaryHeap_Free(Queue* q, bool free_values)
bool BinaryHeap_Push(Queue* q, void* item, int priority) {
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->binaryheap.size);
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
if (q->binaryheap.size == q->binaryheap.max_size)
if (q->data.binaryheap.size == q->data.binaryheap.max_size)
return false;
assert(q->binaryheap.size < q->binaryheap.max_size);
assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
if (q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
/* The currently allocated blocks are full, allocate a new one */
assert((q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
q->binaryheap.blocks++;
assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
q->data.binaryheap.blocks++;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
#endif
}
// Add the item at the end of the array
BIN_HEAP_ARR(q->binaryheap.size+1).priority = priority;
BIN_HEAP_ARR(q->binaryheap.size+1).item = item;
q->binaryheap.size++;
BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority;
BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item;
q->data.binaryheap.size++;
// Now we are going to check where it belongs. As long as the parent is
// bigger, we switch with the parent
{
int i, j;
BinaryHeapNode temp;
i = q->binaryheap.size;
i = q->data.binaryheap.size;
while (i > 1) {
// Get the parent of this object (divide by 2)
j = i / 2;
@ -327,20 +327,20 @@ bool BinaryHeap_Push(Queue* q, void* item, int priority) {
bool BinaryHeap_Delete(Queue* q, void* item, int priority)
{
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->binaryheap.size);
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
uint i = 0;
// First, we try to find the item..
do {
if (BIN_HEAP_ARR(i+1).item == item) break;
i++;
} while (i < q->binaryheap.size);
} while (i < q->data.binaryheap.size);
// We did not find the item, so we return false
if (i == q->binaryheap.size) return false;
if (i == q->data.binaryheap.size) return false;
// Now we put the last item over the current item while decreasing the size of the elements
q->binaryheap.size--;
BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->binaryheap.size+1);
q->data.binaryheap.size--;
BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1);
// Now the only thing we have to do, is resort it..
// On place i there is the item to be sorted.. let's start there
@ -354,14 +354,14 @@ bool BinaryHeap_Delete(Queue* q, void* item, int priority)
for (;;) {
j = i;
// Check if we have 2 childs
if (2*j+1 <= q->binaryheap.size) {
if (2*j+1 <= q->data.binaryheap.size) {
// Is this child smaller then the parent?
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
// Yes, we _need_ to use i here, not j, because we want to have the smallest child
// This way we get that straight away!
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
// Do we have one child?
} else if (2*j <= q->binaryheap.size) {
} else if (2*j <= q->data.binaryheap.size) {
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
}
@ -382,10 +382,10 @@ bool BinaryHeap_Delete(Queue* q, void* item, int priority)
void* BinaryHeap_Pop(Queue* q) {
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->binaryheap.size);
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
void* result;
if (q->binaryheap.size == 0)
if (q->data.binaryheap.size == 0)
return NULL;
// The best item is always on top, so give that as result
@ -404,13 +404,13 @@ void init_BinaryHeap(Queue* q, uint max_size)
q->del = BinaryHeap_Delete;
q->clear = BinaryHeap_Clear;
q->free = BinaryHeap_Free;
q->binaryheap.max_size = max_size;
q->binaryheap.size = 0;
q->data.binaryheap.max_size = max_size;
q->data.binaryheap.size = 0;
// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
// It autosizes when it runs out of memory
q->binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
q->binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
q->binaryheap.blocks = 1;
q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
q->data.binaryheap.blocks = 1;
q->freeq = false;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));

@ -76,7 +76,8 @@ struct Queue{
uint blocks; /* The amount of blocks for which space is reserved in elements */
BinaryHeapNode** elements;
} binaryheap;
};
} data;
/* If true, this struct will be free'd when the
* Queue is deleted. */
bool freeq;

Loading…
Cancel
Save