5.2 KiB
Currently, the application provides the following main API endpoints:
API Endpoints Documentation
/api/answer
Description:: This endpoint is used to request answers to user-provided questions.
Request: Method: POST Headers: Content-Type should be set to "application/json; charset=utf-8" Request Body: JSON object with the following fields:
- question: The user's question
- history: (Optional) Previous conversation history
- api_key: Your API key
- embeddings_key: Your embeddings key
- active_docs: The location of active documentation
Here is a JavaScript Fetch Request example:
// answer (POST http://127.0.0.1:5000/api/answer)
fetch("http://127.0.0.1:5000/api/answer", {
"method": "POST",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
"body": JSON.stringify({"question":"Hi","history":null,"api_key":"OPENAI_API_KEY","embeddings_key":"OPENAI_API_KEY",
"active_docs": "javascript/.project/ES2015/openai_text-embedding-ada-002/"})
})
.then((res) => res.text())
.then(console.log.bind(console))
Response In response, you will get a JSON document containing the answer,query and the result:
{
"answer": " Hi there! How can I help you?\n",
"query": "Hi",
"result": " Hi there! How can I help you?\nSOURCES:"
}
/api/docs_check
Description: This endpoint will make sure documentation is loaded on the server (just run it every time user is switching between libraries (documentations)).
Request: Headers: Content-Type should be set to "application/json; charset=utf-8" Request Body: JSON object with the field:
- docs: The location of the documentation
// answer (POST http://127.0.0.1:5000/api/docs_check)
fetch("http://127.0.0.1:5000/api/docs_check", {
"method": "POST",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
"body": JSON.stringify({"docs":"javascript/.project/ES2015/openai_text-embedding-ada-002/"})
})
.then((res) => res.text())
.then(console.log.bind(console))
Response: In response, you will get a JSON document like this one indicating whether the documentation exists or not.:
{
"status": "exists"
}
/api/combine
Description: This endpoint provides information about available vectors and their locations with a simple GET request.
Request: Method: GET
Response:
Response will include:
date
, description
, docLink
, fullName
, language
, location
(local or docshub), model
, name
, version
.
Example of JSON in Docshub and local:
/api/upload
Description: This endpoint is used to upload a file that needs to be trained, response is JSON with task ID, which can be used to check on task's progress.
Request: Method: POST Request Body: A multipart/form-data form with file upload and additional fields, including "user" and "name."
HTML example:
<form action="/api/upload" method="post" enctype="multipart/form-data" class="mt-2">
<input type="file" name="file" class="py-4" id="file-upload">
<input type="text" name="user" value="local" hidden>
<input type="text" name="name" placeholder="Name:">
<button type="submit" class="py-2 px-4 text-white bg-purple-30 rounded-md hover:bg-purple-30 focus:outline-none focus:ring-2 focus:ring-offset-2 focus:ring-purple-30">
Upload
</button>
</form>
Response: This endpoint is used to get the JSON response with a status and a task ID that can be used to check the task's progress.
/api/task_status
Description:
This endpoint is used to get the status of a task (task_id
) from /api/upload
Request: Method: GET Query Parameter: task_id (task ID to check)
Sample JavaScript Fetch Request:
// Task status (Get http://127.0.0.1:5000/api/task_status)
fetch("http://localhost:5001/api/task_status?task_id=YOUR_TASK_ID", {
"method": "GET",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
})
.then((res) => res.text())
.then(console.log.bind(console))
Responses: There are two types of responses:
- While the task is still running, the 'current' value will show progress from 0 to 100.
{
"result": {
"current": 1
},
"status": "PROGRESS"
}
- When task is completed:
{
"result": {
"directory": "temp",
"filename": "install.rst",
"formats": [
".rst",
".md",
".pdf"
],
"name_job": "somename",
"user": "local"
},
"status": "SUCCESS"
}
/api/delete_old
Description: This endpoint is used to delete old Vector Stores.
Request: Method: GET
// Task status (GET http://127.0.0.1:5000/api/docs_check)
fetch("http://localhost:5001/api/task_status?task_id=b2d2a0f4-387c-44fd-a443-e4fe2e7454d1", {
"method": "GET",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
})
.then((res) => res.text())
.then(console.log.bind(console))
Response: JSON response indicating the status of the operation.
{ "status": "ok" }