DocsGPT/scripts/parser/open_ai_func.py
冯不游 b83589a308 feat: add support for directory list
example: `python ingest.py --dir inputs1 --dir another --dir ../inputs`,
the outputs will be in `outputs/input_folder_name/`
2023-02-15 02:30:39 +08:00

77 lines
3.0 KiB
Python

import os
import faiss
import pickle
import tiktoken
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = ((num_tokens/1000) * 0.0004)
return num_tokens, total_price
def call_openai_api(docs, folder_name):
# Function to create a vector store from the documents and save it to disk.
# create output folder if it doesn't exist
if not os.path.exists(f"outputs/{folder_name}"):
os.makedirs(f"outputs/{folder_name}")
from tqdm import tqdm
docs_test = [docs[0]]
# remove the first element from docs
docs.pop(0)
# cut first n docs if you want to restart
#docs = docs[:n]
c1 = 0
store = FAISS.from_documents(docs_test, OpenAIEmbeddings())
for i in tqdm(docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format='{l_bar}{bar}| Time Left: {remaining}'):
try:
import time
store.add_texts([i.page_content], metadatas=[i.metadata])
except Exception as e:
print(e)
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
store_index_bak = store.index
store.index = None
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
print("Sleeping for 60 seconds and trying again")
time.sleep(60)
store.index = store_index_bak
store.add_texts([i.page_content], metadatas=[i.metadata])
c1 += 1
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
store.index = None
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
def get_user_permission(docs, folder_name):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
#docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
#Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs, folder_name)
elif user_input == "":
call_openai_api(docs, folder_name)
else:
print("The API was not called. No money was spent.")