DocsGPT/scripts/ingest.py

110 lines
4.3 KiB
Python
Raw Normal View History

import os
import sys
import nltk
import dotenv
2023-02-14 15:37:07 +00:00
import typer
2023-02-22 17:19:13 +00:00
import ast
2023-02-14 15:37:07 +00:00
2023-02-22 17:19:13 +00:00
from collections import defaultdict
from pathlib import Path
2023-02-14 15:37:07 +00:00
from typing import List, Optional
from langchain.text_splitter import RecursiveCharacterTextSplitter
from parser.file.bulk import SimpleDirectoryReader
from parser.schema.base import Document
from parser.open_ai_func import call_openai_api, get_user_permission
2023-02-22 17:19:13 +00:00
from parser.py2doc import get_classes, get_functions, transform_to_docs
dotenv.load_dotenv()
2023-02-14 15:37:07 +00:00
app = typer.Typer(add_completion=False)
2023-02-14 15:37:07 +00:00
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
#Splits all files in specified folder to documents
2023-02-14 15:37:07 +00:00
@app.command()
2023-02-15 09:10:30 +00:00
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
help="Whether to skip price confirmation"),
dir: Optional[List[str]] = typer.Option(["inputs"],
help="""List of paths to directory for index creation.
E.g. --dir inputs --dir inputs2"""),
file: Optional[List[str]] = typer.Option(None,
help="""File paths to use (Optional; overrides dir).
E.g. --file inputs/1.md --file inputs/2.md"""),
2023-02-14 15:37:07 +00:00
recursive: Optional[bool] = typer.Option(True,
help="Whether to recursively search in subdirectories."),
limit: Optional[int] = typer.Option(None,
help="Maximum number of files to read."),
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
help="""List of required extensions (list with .)
Currently supported: .rst, .md, .pdf, .docx, .csv, .epub, .html"""),
2023-02-14 15:37:07 +00:00
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles).")):
"""
Creates index from specified location or files.
By default /inputs folder is used, .rst and .md are parsed.
"""
def process_one_docs(directory, folder_name):
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude).load_data()
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = RecursiveCharacterTextSplitter()
docs = text_splitter.split_documents(raw_docs)
# Here we check for command line arguments for bot calls.
# If no argument exists or the yes is not True, then the
# user permission is requested to call the API.
if len(sys.argv) > 1:
if yes:
call_openai_api(docs, folder_name)
else:
get_user_permission(docs, folder_name)
2023-02-14 15:37:07 +00:00
else:
get_user_permission(docs, folder_name)
folder_counts = defaultdict(int)
folder_names = []
for dir_path in dir:
folder_name = os.path.basename(os.path.normpath(dir_path))
folder_counts[folder_name] += 1
if folder_counts[folder_name] > 1:
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
folder_names.append(folder_name)
for directory, folder_name in zip(dir, folder_names):
process_one_docs(directory, folder_name)
2023-02-14 15:37:07 +00:00
2023-02-22 17:19:13 +00:00
@app.command()
def convert():
ps = list(Path("inputs").glob("**/*.py"))
data = []
sources = []
for p in ps:
with open(p) as f:
data.append(f.read())
sources.append(p)
functions_dict = {}
classes_dict = {}
c1 = 0
for code in data:
functions = get_functions(ast.parse(code))
source = str(sources[c1])
functions_dict[source] = functions
classes = get_classes(code)
classes_dict[source] = classes
c1 += 1
transform_to_docs(functions_dict, classes_dict)
2023-02-14 15:37:07 +00:00
if __name__ == "__main__":
app()