166 lines
5.5 KiB
Python
166 lines
5.5 KiB
Python
|
import pickle
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from sklearn.preprocessing import LabelBinarizer
|
||
|
|
||
|
|
||
|
def _load_label_names():
|
||
|
"""
|
||
|
Load the label names from file
|
||
|
"""
|
||
|
return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
||
|
|
||
|
|
||
|
def load_cfar10_batch(cifar10_dataset_folder_path, batch_id):
|
||
|
"""
|
||
|
Load a batch of the dataset
|
||
|
"""
|
||
|
with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file:
|
||
|
batch = pickle.load(file, encoding='latin1')
|
||
|
|
||
|
features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
|
||
|
labels = batch['labels']
|
||
|
|
||
|
return features, labels
|
||
|
|
||
|
|
||
|
def display_stats(cifar10_dataset_folder_path, batch_id, sample_id):
|
||
|
"""
|
||
|
Display Stats of the the dataset
|
||
|
"""
|
||
|
batch_ids = list(range(1, 6))
|
||
|
|
||
|
if batch_id not in batch_ids:
|
||
|
print('Batch Id out of Range. Possible Batch Ids: {}'.format(batch_ids))
|
||
|
return None
|
||
|
|
||
|
features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id)
|
||
|
|
||
|
if not (0 <= sample_id < len(features)):
|
||
|
print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id))
|
||
|
return None
|
||
|
|
||
|
print('\nStats of batch {}:'.format(batch_id))
|
||
|
print('Samples: {}'.format(len(features)))
|
||
|
print('Label Counts: {}'.format(dict(zip(*np.unique(labels, return_counts=True)))))
|
||
|
print('First 20 Labels: {}'.format(labels[:20]))
|
||
|
|
||
|
sample_image = features[sample_id]
|
||
|
sample_label = labels[sample_id]
|
||
|
label_names = _load_label_names()
|
||
|
|
||
|
print('\nExample of Image {}:'.format(sample_id))
|
||
|
print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max()))
|
||
|
print('Image - Shape: {}'.format(sample_image.shape))
|
||
|
print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label]))
|
||
|
plt.axis('off')
|
||
|
plt.imshow(sample_image)
|
||
|
|
||
|
|
||
|
def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename):
|
||
|
"""
|
||
|
Preprocess data and save it to file
|
||
|
"""
|
||
|
features = normalize(features)
|
||
|
labels = one_hot_encode(labels)
|
||
|
|
||
|
pickle.dump((features, labels), open(filename, 'wb'))
|
||
|
|
||
|
|
||
|
def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode):
|
||
|
"""
|
||
|
Preprocess Training and Validation Data
|
||
|
"""
|
||
|
n_batches = 5
|
||
|
valid_features = []
|
||
|
valid_labels = []
|
||
|
|
||
|
for batch_i in range(1, n_batches + 1):
|
||
|
features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i)
|
||
|
validation_count = int(len(features) * 0.1)
|
||
|
|
||
|
# Prprocess and save a batch of training data
|
||
|
_preprocess_and_save(
|
||
|
normalize,
|
||
|
one_hot_encode,
|
||
|
features[:-validation_count],
|
||
|
labels[:-validation_count],
|
||
|
'preprocess_batch_' + str(batch_i) + '.p')
|
||
|
|
||
|
# Use a portion of training batch for validation
|
||
|
valid_features.extend(features[-validation_count:])
|
||
|
valid_labels.extend(labels[-validation_count:])
|
||
|
|
||
|
# Preprocess and Save all validation data
|
||
|
_preprocess_and_save(
|
||
|
normalize,
|
||
|
one_hot_encode,
|
||
|
np.array(valid_features),
|
||
|
np.array(valid_labels),
|
||
|
'preprocess_validation.p')
|
||
|
|
||
|
with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file:
|
||
|
batch = pickle.load(file, encoding='latin1')
|
||
|
|
||
|
# load the training data
|
||
|
test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
|
||
|
test_labels = batch['labels']
|
||
|
|
||
|
# Preprocess and Save all training data
|
||
|
_preprocess_and_save(
|
||
|
normalize,
|
||
|
one_hot_encode,
|
||
|
np.array(test_features),
|
||
|
np.array(test_labels),
|
||
|
'preprocess_training.p')
|
||
|
|
||
|
|
||
|
def batch_features_labels(features, labels, batch_size):
|
||
|
"""
|
||
|
Split features and labels into batches
|
||
|
"""
|
||
|
for start in range(0, len(features), batch_size):
|
||
|
end = min(start + batch_size, len(features))
|
||
|
yield features[start:end], labels[start:end]
|
||
|
|
||
|
|
||
|
def load_preprocess_training_batch(batch_id, batch_size):
|
||
|
"""
|
||
|
Load the Preprocessed Training data and return them in batches of <batch_size> or less
|
||
|
"""
|
||
|
filename = 'preprocess_batch_' + str(batch_id) + '.p'
|
||
|
features, labels = pickle.load(open(filename, mode='rb'))
|
||
|
|
||
|
# Return the training data in batches of size <batch_size> or less
|
||
|
return batch_features_labels(features, labels, batch_size)
|
||
|
|
||
|
|
||
|
def display_image_predictions(features, labels, predictions):
|
||
|
n_classes = 10
|
||
|
label_names = _load_label_names()
|
||
|
label_binarizer = LabelBinarizer()
|
||
|
label_binarizer.fit(range(n_classes))
|
||
|
label_ids = label_binarizer.inverse_transform(np.array(labels))
|
||
|
|
||
|
fig, axies = plt.subplots(nrows=4, ncols=2)
|
||
|
fig.tight_layout()
|
||
|
fig.suptitle('Softmax Predictions', fontsize=20, y=1.1)
|
||
|
|
||
|
n_predictions = 3
|
||
|
margin = 0.05
|
||
|
ind = np.arange(n_predictions)
|
||
|
width = (1. - 2. * margin) / n_predictions
|
||
|
|
||
|
for image_i, (feature, label_id, pred_indicies, pred_values) in enumerate(zip(features, label_ids, predictions.indices, predictions.values)):
|
||
|
pred_names = [label_names[pred_i] for pred_i in pred_indicies]
|
||
|
correct_name = label_names[label_id]
|
||
|
|
||
|
axies[image_i][0].imshow(feature*255)
|
||
|
axies[image_i][0].set_title(correct_name)
|
||
|
axies[image_i][0].set_axis_off()
|
||
|
|
||
|
axies[image_i][1].barh(ind + margin, pred_values[::-1], width)
|
||
|
axies[image_i][1].set_yticks(ind + margin)
|
||
|
axies[image_i][1].set_yticklabels(pred_names[::-1])
|
||
|
axies[image_i][1].set_xticks([0, 0.5, 1.0])
|