1181 lines
37 KiB
JavaScript
1181 lines
37 KiB
JavaScript
(function(exports){
|
|
crossfilter.version = "1.0.3";
|
|
function crossfilter_identity(d) {
|
|
return d;
|
|
}
|
|
crossfilter.permute = permute;
|
|
|
|
function permute(array, index) {
|
|
for (var i = 0, n = index.length, copy = new Array(n); i < n; ++i) {
|
|
copy[i] = array[index[i]];
|
|
}
|
|
return copy;
|
|
}
|
|
var bisect = crossfilter.bisect = bisect_by(crossfilter_identity);
|
|
|
|
bisect.by = bisect_by;
|
|
|
|
function bisect_by(f) {
|
|
|
|
// Locate the insertion point for x in a to maintain sorted order. The
|
|
// arguments lo and hi may be used to specify a subset of the array which
|
|
// should be considered; by default the entire array is used. If x is already
|
|
// present in a, the insertion point will be before (to the left of) any
|
|
// existing entries. The return value is suitable for use as the first
|
|
// argument to `array.splice` assuming that a is already sorted.
|
|
//
|
|
// The returned insertion point i partitions the array a into two halves so
|
|
// that all v < x for v in a[lo:i] for the left side and all v >= x for v in
|
|
// a[i:hi] for the right side.
|
|
function bisectLeft(a, x, lo, hi) {
|
|
while (lo < hi) {
|
|
var mid = lo + hi >> 1;
|
|
if (f(a[mid]) < x) lo = mid + 1;
|
|
else hi = mid;
|
|
}
|
|
return lo;
|
|
}
|
|
|
|
// Similar to bisectLeft, but returns an insertion point which comes after (to
|
|
// the right of) any existing entries of x in a.
|
|
//
|
|
// The returned insertion point i partitions the array into two halves so that
|
|
// all v <= x for v in a[lo:i] for the left side and all v > x for v in
|
|
// a[i:hi] for the right side.
|
|
function bisectRight(a, x, lo, hi) {
|
|
while (lo < hi) {
|
|
var mid = lo + hi >> 1;
|
|
if (x < f(a[mid])) hi = mid;
|
|
else lo = mid + 1;
|
|
}
|
|
return lo;
|
|
}
|
|
|
|
bisectRight.right = bisectRight;
|
|
bisectRight.left = bisectLeft;
|
|
return bisectRight;
|
|
}
|
|
var heap = crossfilter.heap = heap_by(crossfilter_identity);
|
|
|
|
heap.by = heap_by;
|
|
|
|
function heap_by(f) {
|
|
|
|
// Builds a binary heap within the specified array a[lo:hi]. The heap has the
|
|
// property such that the parent a[lo+i] is always less than or equal to its
|
|
// two children: a[lo+2*i+1] and a[lo+2*i+2].
|
|
function heap(a, lo, hi) {
|
|
var n = hi - lo,
|
|
i = (n >>> 1) + 1;
|
|
while (--i > 0) sift(a, i, n, lo);
|
|
return a;
|
|
}
|
|
|
|
// Sorts the specified array a[lo:hi] in descending order, assuming it is
|
|
// already a heap.
|
|
function sort(a, lo, hi) {
|
|
var n = hi - lo,
|
|
t;
|
|
while (--n > 0) t = a[lo], a[lo] = a[lo + n], a[lo + n] = t, sift(a, 1, n, lo);
|
|
return a;
|
|
}
|
|
|
|
// Sifts the element a[lo+i-1] down the heap, where the heap is the contiguous
|
|
// slice of array a[lo:lo+n]. This method can also be used to update the heap
|
|
// incrementally, without incurring the full cost of reconstructing the heap.
|
|
function sift(a, i, n, lo) {
|
|
var d = a[--lo + i],
|
|
x = f(d),
|
|
child;
|
|
while ((child = i << 1) <= n) {
|
|
if (child < n && f(a[lo + child]) > f(a[lo + child + 1])) child++;
|
|
if (x <= f(a[lo + child])) break;
|
|
a[lo + i] = a[lo + child];
|
|
i = child;
|
|
}
|
|
a[lo + i] = d;
|
|
}
|
|
|
|
heap.sort = sort;
|
|
return heap;
|
|
}
|
|
var heapselect = crossfilter.heapselect = heapselect_by(crossfilter_identity);
|
|
|
|
heapselect.by = heapselect_by;
|
|
|
|
function heapselect_by(f) {
|
|
var heap = heap_by(f);
|
|
|
|
// Returns a new array containing the top k elements in the array a[lo:hi].
|
|
// The returned array is not sorted, but maintains the heap property. If k is
|
|
// greater than hi - lo, then fewer than k elements will be returned. The
|
|
// order of elements in a is unchanged by this operation.
|
|
function heapselect(a, lo, hi, k) {
|
|
var queue = new Array(k = Math.min(hi - lo, k)),
|
|
min,
|
|
i,
|
|
x,
|
|
d;
|
|
|
|
for (i = 0; i < k; ++i) queue[i] = a[lo++];
|
|
heap(queue, 0, k);
|
|
|
|
if (lo < hi) {
|
|
min = f(queue[0]);
|
|
do {
|
|
if (x = f(d = a[lo]) > min) {
|
|
queue[0] = d;
|
|
min = f(heap(queue, 0, k)[0]);
|
|
}
|
|
} while (++lo < hi);
|
|
}
|
|
|
|
return queue;
|
|
}
|
|
|
|
return heapselect;
|
|
}
|
|
var insertionsort = crossfilter.insertionsort = insertionsort_by(crossfilter_identity);
|
|
|
|
insertionsort.by = insertionsort_by;
|
|
|
|
function insertionsort_by(f) {
|
|
|
|
function insertionsort(a, lo, hi) {
|
|
for (var i = lo + 1; i < hi; ++i) {
|
|
for (var j = i, t = a[i], x = f(t); j > lo && f(a[j - 1]) > x; --j) {
|
|
a[j] = a[j - 1];
|
|
}
|
|
a[j] = t;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
return insertionsort;
|
|
}
|
|
// Algorithm designed by Vladimir Yaroslavskiy.
|
|
// Implementation based on the Dart project; see lib/dart/LICENSE for details.
|
|
|
|
var quicksort = crossfilter.quicksort = quicksort_by(crossfilter_identity);
|
|
|
|
quicksort.by = quicksort_by;
|
|
|
|
function quicksort_by(f) {
|
|
var insertionsort = insertionsort_by(f);
|
|
|
|
function sort(a, lo, hi) {
|
|
return (hi - lo < quicksort_sizeThreshold
|
|
? insertionsort
|
|
: quicksort)(a, lo, hi);
|
|
}
|
|
|
|
function quicksort(a, lo, hi) {
|
|
|
|
// Compute the two pivots by looking at 5 elements.
|
|
var sixth = (hi - lo) / 6 | 0,
|
|
i1 = lo + sixth,
|
|
i5 = hi - 1 - sixth,
|
|
i3 = lo + hi - 1 >> 1, // The midpoint.
|
|
i2 = i3 - sixth,
|
|
i4 = i3 + sixth;
|
|
|
|
var e1 = a[i1], x1 = f(e1),
|
|
e2 = a[i2], x2 = f(e2),
|
|
e3 = a[i3], x3 = f(e3),
|
|
e4 = a[i4], x4 = f(e4),
|
|
e5 = a[i5], x5 = f(e5);
|
|
|
|
var t;
|
|
|
|
// Sort the selected 5 elements using a sorting network.
|
|
if (x1 > x2) t = e1, e1 = e2, e2 = t, t = x1, x1 = x2, x2 = t;
|
|
if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t;
|
|
if (x1 > x3) t = e1, e1 = e3, e3 = t, t = x1, x1 = x3, x3 = t;
|
|
if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t;
|
|
if (x1 > x4) t = e1, e1 = e4, e4 = t, t = x1, x1 = x4, x4 = t;
|
|
if (x3 > x4) t = e3, e3 = e4, e4 = t, t = x3, x3 = x4, x4 = t;
|
|
if (x2 > x5) t = e2, e2 = e5, e5 = t, t = x2, x2 = x5, x5 = t;
|
|
if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t;
|
|
if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t;
|
|
|
|
var pivot1 = e2, pivotValue1 = x2,
|
|
pivot2 = e4, pivotValue2 = x4;
|
|
|
|
// e2 and e4 have been saved in the pivot variables. They will be written
|
|
// back, once the partitioning is finished.
|
|
a[i1] = e1;
|
|
a[i2] = a[lo];
|
|
a[i3] = e3;
|
|
a[i4] = a[hi - 1];
|
|
a[i5] = e5;
|
|
|
|
var less = lo + 1, // First element in the middle partition.
|
|
great = hi - 2; // Last element in the middle partition.
|
|
|
|
// Note that for value comparison, <, <=, >= and > coerce to a primitive via
|
|
// Object.prototype.valueOf; == and === do not, so in order to be consistent
|
|
// with natural order (such as for Date objects), we must do two compares.
|
|
var pivotsEqual = pivotValue1 <= pivotValue2 && pivotValue1 >= pivotValue2;
|
|
if (pivotsEqual) {
|
|
|
|
// Degenerated case where the partitioning becomes a dutch national flag
|
|
// problem.
|
|
//
|
|
// [ | < pivot | == pivot | unpartitioned | > pivot | ]
|
|
// ^ ^ ^ ^ ^
|
|
// left less k great right
|
|
//
|
|
// a[left] and a[right] are undefined and are filled after the
|
|
// partitioning.
|
|
//
|
|
// Invariants:
|
|
// 1) for x in ]left, less[ : x < pivot.
|
|
// 2) for x in [less, k[ : x == pivot.
|
|
// 3) for x in ]great, right[ : x > pivot.
|
|
for (var k = less; k <= great; ++k) {
|
|
var ek = a[k], xk = f(ek);
|
|
if (xk < pivotValue1) {
|
|
if (k !== less) {
|
|
a[k] = a[less];
|
|
a[less] = ek;
|
|
}
|
|
++less;
|
|
} else if (xk > pivotValue1) {
|
|
|
|
// Find the first element <= pivot in the range [k - 1, great] and
|
|
// put [:ek:] there. We know that such an element must exist:
|
|
// When k == less, then el3 (which is equal to pivot) lies in the
|
|
// interval. Otherwise a[k - 1] == pivot and the search stops at k-1.
|
|
// Note that in the latter case invariant 2 will be violated for a
|
|
// short amount of time. The invariant will be restored when the
|
|
// pivots are put into their final positions.
|
|
while (true) {
|
|
var greatValue = f(a[great]);
|
|
if (greatValue > pivotValue1) {
|
|
great--;
|
|
// This is the only location in the while-loop where a new
|
|
// iteration is started.
|
|
continue;
|
|
} else if (greatValue < pivotValue1) {
|
|
// Triple exchange.
|
|
a[k] = a[less];
|
|
a[less++] = a[great];
|
|
a[great--] = ek;
|
|
break;
|
|
} else {
|
|
a[k] = a[great];
|
|
a[great--] = ek;
|
|
// Note: if great < k then we will exit the outer loop and fix
|
|
// invariant 2 (which we just violated).
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
|
|
// We partition the list into three parts:
|
|
// 1. < pivot1
|
|
// 2. >= pivot1 && <= pivot2
|
|
// 3. > pivot2
|
|
//
|
|
// During the loop we have:
|
|
// [ | < pivot1 | >= pivot1 && <= pivot2 | unpartitioned | > pivot2 | ]
|
|
// ^ ^ ^ ^ ^
|
|
// left less k great right
|
|
//
|
|
// a[left] and a[right] are undefined and are filled after the
|
|
// partitioning.
|
|
//
|
|
// Invariants:
|
|
// 1. for x in ]left, less[ : x < pivot1
|
|
// 2. for x in [less, k[ : pivot1 <= x && x <= pivot2
|
|
// 3. for x in ]great, right[ : x > pivot2
|
|
for (var k = less; k <= great; k++) {
|
|
var ek = a[k], xk = f(ek);
|
|
if (xk < pivotValue1) {
|
|
if (k !== less) {
|
|
a[k] = a[less];
|
|
a[less] = ek;
|
|
}
|
|
++less;
|
|
} else {
|
|
if (xk > pivotValue2) {
|
|
while (true) {
|
|
var greatValue = f(a[great]);
|
|
if (greatValue > pivotValue2) {
|
|
great--;
|
|
if (great < k) break;
|
|
// This is the only location inside the loop where a new
|
|
// iteration is started.
|
|
continue;
|
|
} else {
|
|
// a[great] <= pivot2.
|
|
if (greatValue < pivotValue1) {
|
|
// Triple exchange.
|
|
a[k] = a[less];
|
|
a[less++] = a[great];
|
|
a[great--] = ek;
|
|
} else {
|
|
// a[great] >= pivot1.
|
|
a[k] = a[great];
|
|
a[great--] = ek;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move pivots into their final positions.
|
|
// We shrunk the list from both sides (a[left] and a[right] have
|
|
// meaningless values in them) and now we move elements from the first
|
|
// and third partition into these locations so that we can store the
|
|
// pivots.
|
|
a[lo] = a[less - 1];
|
|
a[less - 1] = pivot1;
|
|
a[hi - 1] = a[great + 1];
|
|
a[great + 1] = pivot2;
|
|
|
|
// The list is now partitioned into three partitions:
|
|
// [ < pivot1 | >= pivot1 && <= pivot2 | > pivot2 ]
|
|
// ^ ^ ^ ^
|
|
// left less great right
|
|
|
|
// Recursive descent. (Don't include the pivot values.)
|
|
sort(a, lo, less - 1);
|
|
sort(a, great + 2, hi);
|
|
|
|
if (pivotsEqual) {
|
|
// All elements in the second partition are equal to the pivot. No
|
|
// need to sort them.
|
|
return a;
|
|
}
|
|
|
|
// In theory it should be enough to call _doSort recursively on the second
|
|
// partition.
|
|
// The Android source however removes the pivot elements from the recursive
|
|
// call if the second partition is too large (more than 2/3 of the list).
|
|
if (less < i1 && great > i5) {
|
|
var lessValue, greatValue;
|
|
while ((lessValue = f(a[less])) <= pivotValue1 && lessValue >= pivotValue1) ++less;
|
|
while ((greatValue = f(a[great])) <= pivotValue2 && greatValue >= pivotValue2) --great;
|
|
|
|
// Copy paste of the previous 3-way partitioning with adaptions.
|
|
//
|
|
// We partition the list into three parts:
|
|
// 1. == pivot1
|
|
// 2. > pivot1 && < pivot2
|
|
// 3. == pivot2
|
|
//
|
|
// During the loop we have:
|
|
// [ == pivot1 | > pivot1 && < pivot2 | unpartitioned | == pivot2 ]
|
|
// ^ ^ ^
|
|
// less k great
|
|
//
|
|
// Invariants:
|
|
// 1. for x in [ *, less[ : x == pivot1
|
|
// 2. for x in [less, k[ : pivot1 < x && x < pivot2
|
|
// 3. for x in ]great, * ] : x == pivot2
|
|
for (var k = less; k <= great; k++) {
|
|
var ek = a[k], xk = f(ek);
|
|
if (xk <= pivotValue1 && xk >= pivotValue1) {
|
|
if (k !== less) {
|
|
a[k] = a[less];
|
|
a[less] = ek;
|
|
}
|
|
less++;
|
|
} else {
|
|
if (xk <= pivotValue2 && xk >= pivotValue2) {
|
|
while (true) {
|
|
var greatValue = f(a[great]);
|
|
if (greatValue <= pivotValue2 && greatValue >= pivotValue2) {
|
|
great--;
|
|
if (great < k) break;
|
|
// This is the only location inside the loop where a new
|
|
// iteration is started.
|
|
continue;
|
|
} else {
|
|
// a[great] < pivot2.
|
|
if (greatValue < pivotValue1) {
|
|
// Triple exchange.
|
|
a[k] = a[less];
|
|
a[less++] = a[great];
|
|
a[great--] = ek;
|
|
} else {
|
|
// a[great] == pivot1.
|
|
a[k] = a[great];
|
|
a[great--] = ek;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The second partition has now been cleared of pivot elements and looks
|
|
// as follows:
|
|
// [ * | > pivot1 && < pivot2 | * ]
|
|
// ^ ^
|
|
// less great
|
|
// Sort the second partition using recursive descent.
|
|
|
|
// The second partition looks as follows:
|
|
// [ * | >= pivot1 && <= pivot2 | * ]
|
|
// ^ ^
|
|
// less great
|
|
// Simply sort it by recursive descent.
|
|
|
|
return sort(a, less, great + 1);
|
|
}
|
|
|
|
return sort;
|
|
}
|
|
|
|
var quicksort_sizeThreshold = 32;
|
|
var crossfilter_array8 = crossfilter_arrayUntyped,
|
|
crossfilter_array16 = crossfilter_arrayUntyped,
|
|
crossfilter_array32 = crossfilter_arrayUntyped,
|
|
crossfilter_arrayLengthen = crossfilter_identity,
|
|
crossfilter_arrayWiden = crossfilter_identity;
|
|
|
|
if (typeof Uint8Array !== "undefined") {
|
|
crossfilter_array8 = function(n) { return new Uint8Array(n); };
|
|
crossfilter_array16 = function(n) { return new Uint16Array(n); };
|
|
crossfilter_array32 = function(n) { return new Uint32Array(n); };
|
|
|
|
crossfilter_arrayLengthen = function(array, length) {
|
|
var copy = new array.constructor(length);
|
|
copy.set(array);
|
|
return copy;
|
|
};
|
|
|
|
crossfilter_arrayWiden = function(array, width) {
|
|
var copy;
|
|
switch (width) {
|
|
case 16: copy = crossfilter_array16(array.length); break;
|
|
case 32: copy = crossfilter_array32(array.length); break;
|
|
default: throw new Error("invalid array width!");
|
|
}
|
|
copy.set(array);
|
|
return copy;
|
|
};
|
|
}
|
|
|
|
function crossfilter_arrayUntyped(n) {
|
|
return new Array(n);
|
|
}
|
|
function crossfilter_filterExact(bisect, value) {
|
|
return function(values) {
|
|
var n = values.length;
|
|
return [bisect.left(values, value, 0, n), bisect.right(values, value, 0, n)];
|
|
};
|
|
}
|
|
|
|
function crossfilter_filterRange(bisect, range) {
|
|
var min = range[0],
|
|
max = range[1];
|
|
return function(values) {
|
|
var n = values.length;
|
|
return [bisect.left(values, min, 0, n), bisect.left(values, max, 0, n)];
|
|
};
|
|
}
|
|
|
|
function crossfilter_filterAll(values) {
|
|
return [0, values.length];
|
|
}
|
|
function crossfilter_null() {
|
|
return null;
|
|
}
|
|
function crossfilter_zero() {
|
|
return 0;
|
|
}
|
|
function crossfilter_reduceIncrement(p) {
|
|
return p + 1;
|
|
}
|
|
|
|
function crossfilter_reduceDecrement(p) {
|
|
return p - 1;
|
|
}
|
|
|
|
function crossfilter_reduceAdd(f) {
|
|
return function(p, v) {
|
|
return p + +f(v);
|
|
};
|
|
}
|
|
|
|
function crossfilter_reduceSubtract(f) {
|
|
return function(p, v) {
|
|
return p - f(v);
|
|
};
|
|
}
|
|
exports.crossfilter = crossfilter;
|
|
|
|
function crossfilter() {
|
|
var crossfilter = {
|
|
add: add,
|
|
dimension: dimension,
|
|
groupAll: groupAll,
|
|
size: size
|
|
};
|
|
|
|
var data = [], // the records
|
|
n = 0, // the number of records; data.length
|
|
m = 0, // number of dimensions in use
|
|
M = 8, // number of dimensions that can fit in `filters`
|
|
filters = crossfilter_array8(0), // M bits per record; 1 is filtered out
|
|
filterListeners = [], // when the filters change
|
|
dataListeners = []; // when data is added
|
|
|
|
// Adds the specified new records to this crossfilter.
|
|
function add(newData) {
|
|
var n0 = n,
|
|
n1 = newData.length;
|
|
|
|
// If there's actually new data to add…
|
|
// Merge the new data into the existing data.
|
|
// Lengthen the filter bitset to handle the new records.
|
|
// Notify listeners (dimensions and groups) that new data is available.
|
|
if (n1) {
|
|
data = data.concat(newData);
|
|
filters = crossfilter_arrayLengthen(filters, n += n1);
|
|
dataListeners.forEach(function(l) { l(newData, n0, n1); });
|
|
}
|
|
|
|
return crossfilter;
|
|
}
|
|
|
|
// Adds a new dimension with the specified value accessor function.
|
|
function dimension(value) {
|
|
var dimension = {
|
|
filter: filter,
|
|
filterExact: filterExact,
|
|
filterRange: filterRange,
|
|
filterAll: filterAll,
|
|
top: top,
|
|
group: group,
|
|
groupAll: groupAll
|
|
};
|
|
|
|
var one = 1 << m++, // bit mask, e.g., 00001000
|
|
zero = ~one, // inverted one, e.g., 11110111
|
|
values, // sorted, cached array
|
|
index, // value rank ↦ object id
|
|
newValues, // temporary array storing newly-added values
|
|
newIndex, // temporary array storing newly-added index
|
|
sort = quicksort_by(function(i) { return newValues[i]; }),
|
|
refilter = crossfilter_filterAll, // for recomputing filter
|
|
indexListeners = [], // when data is added
|
|
lo0 = 0,
|
|
hi0 = 0;
|
|
|
|
// Updating a dimension is a two-stage process. First, we must update the
|
|
// associated filters for the newly-added records. Once all dimensions have
|
|
// updated their filters, the groups are notified to update.
|
|
dataListeners.unshift(preAdd);
|
|
dataListeners.push(postAdd);
|
|
|
|
// Incorporate any existing data into this dimension, and make sure that the
|
|
// filter bitset is wide enough to handle the new dimension.
|
|
if (m > M) filters = crossfilter_arrayWiden(filters, M <<= 1);
|
|
preAdd(data, 0, n);
|
|
postAdd(data, 0, n);
|
|
|
|
// Incorporates the specified new records into this dimension.
|
|
// This function is responsible for updating filters, values, and index.
|
|
function preAdd(newData, n0, n1) {
|
|
|
|
// Permute new values into natural order using a sorted index.
|
|
newValues = newData.map(value);
|
|
newIndex = sort(crossfilter_range(n1), 0, n1);
|
|
newValues = permute(newValues, newIndex);
|
|
|
|
// Bisect newValues to determine which new records are selected.
|
|
var bounds = refilter(newValues), lo1 = bounds[0], hi1 = bounds[1], i;
|
|
for (i = 0; i < lo1; ++i) filters[newIndex[i] + n0] |= one;
|
|
for (i = hi1; i < n1; ++i) filters[newIndex[i] + n0] |= one;
|
|
|
|
// If this dimension previously had no data, then we don't need to do the
|
|
// more expensive merge operation; use the new values and index as-is.
|
|
if (!n0) {
|
|
values = newValues;
|
|
index = newIndex;
|
|
lo0 = lo1;
|
|
hi0 = hi1;
|
|
return;
|
|
}
|
|
|
|
var oldValues = values,
|
|
oldIndex = index,
|
|
i0 = 0,
|
|
i1 = 0;
|
|
|
|
// Otherwise, create new arrays into which to merge new and old.
|
|
values = new Array(n);
|
|
index = crossfilter_index(n, n);
|
|
|
|
// Merge the old and new sorted values, and old and new index.
|
|
for (i = 0; i0 < n0 && i1 < n1; ++i) {
|
|
if (oldValues[i0] < newValues[i1]) {
|
|
values[i] = oldValues[i0];
|
|
index[i] = oldIndex[i0++];
|
|
} else {
|
|
values[i] = newValues[i1];
|
|
index[i] = newIndex[i1++] + n0;
|
|
}
|
|
}
|
|
|
|
// Add any remaining old values.
|
|
for (; i0 < n0; ++i0, ++i) {
|
|
values[i] = oldValues[i0];
|
|
index[i] = oldIndex[i0];
|
|
}
|
|
|
|
// Add any remaining new values.
|
|
for (; i1 < n1; ++i1, ++i) {
|
|
values[i] = newValues[i1];
|
|
index[i] = newIndex[i1] + n0;
|
|
}
|
|
|
|
// Bisect again to recompute lo0 and hi0.
|
|
bounds = refilter(values), lo0 = bounds[0], hi0 = bounds[1];
|
|
}
|
|
|
|
// When all filters have updated, notify index listeners of the new values.
|
|
function postAdd(newData, n0, n1) {
|
|
indexListeners.forEach(function(l) { l(newValues, newIndex, n0, n1); });
|
|
newValues = newIndex = null;
|
|
}
|
|
|
|
// Updates the selected values based on the specified bounds [lo, hi].
|
|
// This implementation is used by all the public filter methods.
|
|
function filterIndex(bounds) {
|
|
var i,
|
|
j,
|
|
k,
|
|
lo1 = bounds[0],
|
|
hi1 = bounds[1],
|
|
added = [],
|
|
removed = [];
|
|
|
|
// Fast incremental update based on previous lo index.
|
|
if (lo1 < lo0) {
|
|
for (i = lo1, j = Math.min(lo0, hi1); i < j; ++i) {
|
|
filters[k = index[i]] ^= one;
|
|
added.push(k);
|
|
}
|
|
} else if (lo1 > lo0) {
|
|
for (i = lo0, j = Math.min(lo1, hi0); i < j; ++i) {
|
|
filters[k = index[i]] ^= one;
|
|
removed.push(k);
|
|
}
|
|
}
|
|
|
|
// Fast incremental update based on previous hi index.
|
|
if (hi1 > hi0) {
|
|
for (i = Math.max(lo1, hi0), j = hi1; i < j; ++i) {
|
|
filters[k = index[i]] ^= one;
|
|
added.push(k);
|
|
}
|
|
} else if (hi1 < hi0) {
|
|
for (i = Math.max(lo0, hi1), j = hi0; i < j; ++i) {
|
|
filters[k = index[i]] ^= one;
|
|
removed.push(k);
|
|
}
|
|
}
|
|
|
|
lo0 = lo1;
|
|
hi0 = hi1;
|
|
filterListeners.forEach(function(l) { l(one, added, removed); });
|
|
return dimension;
|
|
}
|
|
|
|
// Filters this dimension using the specified range, value, or null.
|
|
// If the range is null, this is equivalent to filterAll.
|
|
// If the range is an array, this is equivalent to filterRange.
|
|
// Otherwise, this is equivalent to filterExact.
|
|
function filter(range) {
|
|
return range == null
|
|
? filterAll() : Array.isArray(range)
|
|
? filterRange(range)
|
|
: filterExact(range);
|
|
}
|
|
|
|
// Filters this dimension to select the exact value.
|
|
function filterExact(value) {
|
|
return filterIndex((refilter = crossfilter_filterExact(bisect, value))(values));
|
|
}
|
|
|
|
// Filters this dimension to select the specified range [lo, hi].
|
|
// The lower bound is inclusive, and the upper bound is exclusive.
|
|
function filterRange(range) {
|
|
return filterIndex((refilter = crossfilter_filterRange(bisect, range))(values));
|
|
}
|
|
|
|
// Clears any filters on this dimension.
|
|
function filterAll() {
|
|
return filterIndex((refilter = crossfilter_filterAll)(values));
|
|
}
|
|
|
|
// Returns the top K selected records, based on this dimension's order.
|
|
// Note: observes this dimension's filter, unlike group and groupAll.
|
|
function top(k) {
|
|
var array = [],
|
|
i = hi0,
|
|
j;
|
|
|
|
while (--i >= lo0 && k > 0) {
|
|
if (!filters[j = index[i]]) {
|
|
array.push(data[j]);
|
|
--k;
|
|
}
|
|
}
|
|
|
|
return array;
|
|
}
|
|
|
|
// Adds a new group to this dimension, using the specified key function.
|
|
function group(key) {
|
|
var group = {
|
|
top: top,
|
|
all: all,
|
|
reduce: reduce,
|
|
reduceCount: reduceCount,
|
|
reduceSum: reduceSum,
|
|
order: order,
|
|
orderNatural: orderNatural,
|
|
size: size
|
|
};
|
|
|
|
var groups, // array of {key, value}
|
|
groupIndex, // object id ↦ group id
|
|
groupWidth = 8,
|
|
groupCapacity = crossfilter_capacity(groupWidth),
|
|
k = 0, // cardinality
|
|
select,
|
|
heap,
|
|
reduceAdd,
|
|
reduceRemove,
|
|
reduceInitial,
|
|
update = crossfilter_null,
|
|
reset = crossfilter_null,
|
|
resetNeeded = true;
|
|
|
|
if (arguments.length < 1) key = crossfilter_identity;
|
|
|
|
// The group listens to the crossfilter for when any dimension changes, so
|
|
// that it can update the associated reduce values. It must also listen to
|
|
// the parent dimension for when data is added, and compute new keys.
|
|
filterListeners.push(update);
|
|
indexListeners.push(add);
|
|
|
|
// Incorporate any existing data into the grouping.
|
|
add(values, index, 0, n);
|
|
|
|
// Incorporates the specified new values into this group.
|
|
// This function is responsible for updating groups and groupIndex.
|
|
function add(newValues, newIndex, n0, n1) {
|
|
var oldGroups = groups,
|
|
reIndex = crossfilter_index(k, groupCapacity),
|
|
add = reduceAdd,
|
|
initial = reduceInitial,
|
|
k0 = k, // old cardinality
|
|
i0 = 0, // index of old group
|
|
i1 = 0, // index of new record
|
|
j, // object id
|
|
g0, // old group
|
|
x0, // old key
|
|
x1, // new key
|
|
g, // group to add
|
|
x; // key of group to add
|
|
|
|
// If a reset is needed, we don't need to update the reduce values.
|
|
if (resetNeeded) add = initial = crossfilter_null;
|
|
|
|
// Reset the new groups (k is a lower bound).
|
|
// Also, make sure that groupIndex exists and is long enough.
|
|
groups = new Array(k), k = 0;
|
|
groupIndex = k0 > 1 ? crossfilter_arrayLengthen(groupIndex, n) : crossfilter_index(n, groupCapacity);
|
|
|
|
// Get the first old key (x0 of g0), if it exists.
|
|
if (k0) x0 = (g0 = oldGroups[0]).key;
|
|
|
|
// Find the first new key (x1), skipping NaN keys.
|
|
while (i1 < n1 && !((x1 = key(newValues[i1])) >= x1)) ++i1;
|
|
|
|
// While new keys remain…
|
|
while (i1 < n1) {
|
|
|
|
// Determine the lesser of the two current keys; new and old.
|
|
// If there are no old keys remaining, then always add the new key.
|
|
if (g0 && x0 <= x1) {
|
|
g = g0, x = x0;
|
|
|
|
// Record the new index of the old group.
|
|
reIndex[i0] = k;
|
|
|
|
// Retrieve the next old key.
|
|
if (g0 = oldGroups[++i0]) x0 = g0.key;
|
|
} else {
|
|
g = {key: x1, value: initial()}, x = x1;
|
|
}
|
|
|
|
// Add the lesser group.
|
|
groups[k] = g;
|
|
|
|
// Add any selected records belonging to the added group, while
|
|
// advancing the new key and populating the associated group index.
|
|
while (!(x1 > x)) {
|
|
groupIndex[j = newIndex[i1] + n0] = k;
|
|
if (!(filters[j] & zero)) g.value = add(g.value, data[j]);
|
|
if (++i1 >= n1) break;
|
|
x1 = key(newValues[i1]);
|
|
}
|
|
|
|
groupIncrement();
|
|
}
|
|
|
|
// Add any remaining old groups that were greater than all new keys.
|
|
// No incremental reduce is needed; these groups have no new records.
|
|
// Also record the new index of the old group.
|
|
while (i0 < k0) {
|
|
groups[reIndex[i0] = k] = oldGroups[i0++];
|
|
groupIncrement();
|
|
}
|
|
|
|
// If we added any new groups before any old groups,
|
|
// update the group index of all the old records.
|
|
if (k > i0) for (i0 = 0; i0 < n0; ++i0) {
|
|
groupIndex[i0] = reIndex[groupIndex[i0]];
|
|
}
|
|
|
|
// Modify the update and reset behavior based on the cardinality.
|
|
// If the cardinality is less than or equal to one, then the groupIndex
|
|
// is not needed. If the cardinality is zero, then there are no records
|
|
// and therefore no groups to update or reset. Note that we also must
|
|
// change the registered listener to point to the new method.
|
|
j = filterListeners.indexOf(update);
|
|
if (k > 1) {
|
|
update = updateMany;
|
|
reset = resetMany;
|
|
} else {
|
|
if (k === 1) {
|
|
update = updateOne;
|
|
reset = resetOne;
|
|
} else {
|
|
update = crossfilter_null;
|
|
reset = crossfilter_null;
|
|
}
|
|
groupIndex = null;
|
|
}
|
|
filterListeners[j] = update;
|
|
|
|
// Count the number of added groups,
|
|
// and widen the group index as needed.
|
|
function groupIncrement() {
|
|
if (++k === groupCapacity) {
|
|
reIndex = crossfilter_arrayWiden(reIndex, groupWidth <<= 1);
|
|
groupIndex = crossfilter_arrayWiden(groupIndex, groupWidth);
|
|
groupCapacity = crossfilter_capacity(groupWidth);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reduces the specified selected or deselected records.
|
|
// This function is only used when the cardinality is greater than 1.
|
|
function updateMany(filterOne, added, removed) {
|
|
if (filterOne === one || resetNeeded) return;
|
|
|
|
var i,
|
|
k,
|
|
n,
|
|
g;
|
|
|
|
// Add the added values.
|
|
for (i = 0, n = added.length; i < n; ++i) {
|
|
if (!(filters[k = added[i]] & zero)) {
|
|
g = groups[groupIndex[k]];
|
|
g.value = reduceAdd(g.value, data[k]);
|
|
}
|
|
}
|
|
|
|
// Remove the removed values.
|
|
for (i = 0, n = removed.length; i < n; ++i) {
|
|
if ((filters[k = removed[i]] & zero) === filterOne) {
|
|
g = groups[groupIndex[k]];
|
|
g.value = reduceRemove(g.value, data[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reduces the specified selected or deselected records.
|
|
// This function is only used when the cardinality is 1.
|
|
function updateOne(filterOne, added, removed) {
|
|
if (filterOne === one || resetNeeded) return;
|
|
|
|
var i,
|
|
k,
|
|
n,
|
|
g = groups[0];
|
|
|
|
// Add the added values.
|
|
for (i = 0, n = added.length; i < n; ++i) {
|
|
if (!(filters[k = added[i]] & zero)) {
|
|
g.value = reduceAdd(g.value, data[k]);
|
|
}
|
|
}
|
|
|
|
// Remove the removed values.
|
|
for (i = 0, n = removed.length; i < n; ++i) {
|
|
if ((filters[k = removed[i]] & zero) === filterOne) {
|
|
g.value = reduceRemove(g.value, data[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recomputes the group reduce values from scratch.
|
|
// This function is only used when the cardinality is greater than 1.
|
|
function resetMany() {
|
|
var i,
|
|
g;
|
|
|
|
// Reset all group values.
|
|
for (i = 0; i < k; ++i) {
|
|
groups[i].value = reduceInitial();
|
|
}
|
|
|
|
// Add any selected records.
|
|
for (i = 0; i < n; ++i) {
|
|
if (!(filters[i] & zero)) {
|
|
g = groups[groupIndex[i]];
|
|
g.value = reduceAdd(g.value, data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recomputes the group reduce values from scratch.
|
|
// This function is only used when the cardinality is 1.
|
|
function resetOne() {
|
|
var i,
|
|
g = groups[0];
|
|
|
|
// Reset the singleton group values.
|
|
g.value = reduceInitial();
|
|
|
|
// Add any selected records.
|
|
for (i = 0; i < n; ++i) {
|
|
if (!(filters[i] & zero)) {
|
|
g.value = reduceAdd(g.value, data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the array of group values, in the dimension's natural order.
|
|
function all() {
|
|
if (resetNeeded) reset(), resetNeeded = false;
|
|
return groups;
|
|
}
|
|
|
|
// Returns a new array containing the top K group values, in reduce order.
|
|
function top(k) {
|
|
var top = select(all(), 0, groups.length, k);
|
|
return heap.sort(top, 0, top.length);
|
|
}
|
|
|
|
// Sets the reduce behavior for this group to use the specified functions.
|
|
// This method lazily recomputes the reduce values, waiting until needed.
|
|
function reduce(add, remove, initial) {
|
|
reduceAdd = add;
|
|
reduceRemove = remove;
|
|
reduceInitial = initial;
|
|
resetNeeded = true;
|
|
return group;
|
|
}
|
|
|
|
// A convenience method for reducing by count.
|
|
function reduceCount() {
|
|
return reduce(crossfilter_reduceIncrement, crossfilter_reduceDecrement, crossfilter_zero);
|
|
}
|
|
|
|
// A convenience method for reducing by sum(value).
|
|
function reduceSum(value) {
|
|
return reduce(crossfilter_reduceAdd(value), crossfilter_reduceSubtract(value), crossfilter_zero);
|
|
}
|
|
|
|
// Sets the reduce order, using the specified accessor.
|
|
function order(value) {
|
|
select = heapselect_by(valueOf);
|
|
heap = heap_by(valueOf);
|
|
function valueOf(d) { return value(d.value); }
|
|
return group;
|
|
}
|
|
|
|
// A convenience method for natural ordering by reduce value.
|
|
function orderNatural() {
|
|
return order(crossfilter_identity);
|
|
}
|
|
|
|
// Returns the cardinality of this group, irrespective of any filters.
|
|
function size() {
|
|
return k;
|
|
}
|
|
|
|
return reduceCount().orderNatural();
|
|
}
|
|
|
|
// A convenience function for generating a singleton group.
|
|
function groupAll() {
|
|
var g = group(crossfilter_null), all = g.all;
|
|
delete g.all;
|
|
delete g.top;
|
|
delete g.order;
|
|
delete g.orderNatural;
|
|
delete g.size;
|
|
g.value = function() { return all()[0].value; };
|
|
return g;
|
|
}
|
|
|
|
return dimension;
|
|
}
|
|
|
|
// A convenience method for groupAll on a dummy dimension.
|
|
// This implementation can be optimized since it is always cardinality 1.
|
|
function groupAll() {
|
|
var group = {
|
|
reduce: reduce,
|
|
reduceCount: reduceCount,
|
|
reduceSum: reduceSum,
|
|
value: value
|
|
};
|
|
|
|
var reduceValue,
|
|
reduceAdd,
|
|
reduceRemove,
|
|
reduceInitial,
|
|
resetNeeded = true;
|
|
|
|
// The group listens to the crossfilter for when any dimension changes, so
|
|
// that it can update the reduce value. It must also listen to the parent
|
|
// dimension for when data is added.
|
|
filterListeners.push(update);
|
|
dataListeners.push(add);
|
|
|
|
// For consistency; actually a no-op since resetNeeded is true.
|
|
add(data, 0, n);
|
|
|
|
// Incorporates the specified new values into this group.
|
|
function add(newData, n0, n1) {
|
|
var i;
|
|
|
|
if (resetNeeded) return;
|
|
|
|
// Add the added values.
|
|
for (i = n0; i < n; ++i) {
|
|
if (!filters[i]) {
|
|
reduceValue = reduceAdd(reduceValue, data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reduces the specified selected or deselected records.
|
|
function update(filterOne, added, removed) {
|
|
var i,
|
|
k,
|
|
n;
|
|
|
|
if (resetNeeded) return;
|
|
|
|
// Add the added values.
|
|
for (i = 0, n = added.length; i < n; ++i) {
|
|
if (!filters[k = added[i]]) {
|
|
reduceValue = reduceAdd(reduceValue, data[k]);
|
|
}
|
|
}
|
|
|
|
// Remove the removed values.
|
|
for (i = 0, n = removed.length; i < n; ++i) {
|
|
if (filters[k = removed[i]] === filterOne) {
|
|
reduceValue = reduceRemove(reduceValue, data[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recomputes the group reduce value from scratch.
|
|
function reset() {
|
|
var i;
|
|
|
|
reduceValue = reduceInitial();
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
if (!filters[i]) {
|
|
reduceValue = reduceAdd(reduceValue, data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sets the reduce behavior for this group to use the specified functions.
|
|
// This method lazily recomputes the reduce value, waiting until needed.
|
|
function reduce(add, remove, initial) {
|
|
reduceAdd = add;
|
|
reduceRemove = remove;
|
|
reduceInitial = initial;
|
|
resetNeeded = true;
|
|
return group;
|
|
}
|
|
|
|
// A convenience method for reducing by count.
|
|
function reduceCount() {
|
|
return reduce(crossfilter_reduceIncrement, crossfilter_reduceDecrement, crossfilter_zero);
|
|
}
|
|
|
|
// A convenience method for reducing by sum(value).
|
|
function reduceSum(value) {
|
|
return reduce(crossfilter_reduceAdd(value), crossfilter_reduceSubtract(value), crossfilter_zero);
|
|
}
|
|
|
|
// Returns the computed reduce value.
|
|
function value() {
|
|
if (resetNeeded) reset(), resetNeeded = false;
|
|
return reduceValue;
|
|
}
|
|
|
|
return reduceCount();
|
|
}
|
|
|
|
// Returns the number of records in this crossfilter, irrespective of any filters.
|
|
function size() {
|
|
return n;
|
|
}
|
|
|
|
return arguments.length
|
|
? add(arguments[0])
|
|
: crossfilter;
|
|
}
|
|
|
|
// Returns an array of size n, big enough to store ids up to m.
|
|
function crossfilter_index(n, m) {
|
|
return (m < 0x101
|
|
? crossfilter_array8 : m < 0x10001
|
|
? crossfilter_array16
|
|
: crossfilter_array32)(n);
|
|
}
|
|
|
|
// Constructs a new array of size n, with sequential values from 0 to n - 1.
|
|
function crossfilter_range(n) {
|
|
var range = crossfilter_index(n, n);
|
|
for (var i = -1; ++i < n;) range[i] = i;
|
|
return range;
|
|
}
|
|
|
|
function crossfilter_capacity(w) {
|
|
return w === 8
|
|
? 0x100 : w === 16
|
|
? 0x10000
|
|
: 0x100000000;
|
|
}
|
|
})(this);
|