nvd3/lib/crossfilter.js
Alexandre Rocha Lima e Marcondes 0a6a6993b4 * First experience with crossfilter
2012-08-22 13:20:41 -03:00

1181 lines
37 KiB
JavaScript

(function(exports){
crossfilter.version = "1.0.3";
function crossfilter_identity(d) {
return d;
}
crossfilter.permute = permute;
function permute(array, index) {
for (var i = 0, n = index.length, copy = new Array(n); i < n; ++i) {
copy[i] = array[index[i]];
}
return copy;
}
var bisect = crossfilter.bisect = bisect_by(crossfilter_identity);
bisect.by = bisect_by;
function bisect_by(f) {
// Locate the insertion point for x in a to maintain sorted order. The
// arguments lo and hi may be used to specify a subset of the array which
// should be considered; by default the entire array is used. If x is already
// present in a, the insertion point will be before (to the left of) any
// existing entries. The return value is suitable for use as the first
// argument to `array.splice` assuming that a is already sorted.
//
// The returned insertion point i partitions the array a into two halves so
// that all v < x for v in a[lo:i] for the left side and all v >= x for v in
// a[i:hi] for the right side.
function bisectLeft(a, x, lo, hi) {
while (lo < hi) {
var mid = lo + hi >> 1;
if (f(a[mid]) < x) lo = mid + 1;
else hi = mid;
}
return lo;
}
// Similar to bisectLeft, but returns an insertion point which comes after (to
// the right of) any existing entries of x in a.
//
// The returned insertion point i partitions the array into two halves so that
// all v <= x for v in a[lo:i] for the left side and all v > x for v in
// a[i:hi] for the right side.
function bisectRight(a, x, lo, hi) {
while (lo < hi) {
var mid = lo + hi >> 1;
if (x < f(a[mid])) hi = mid;
else lo = mid + 1;
}
return lo;
}
bisectRight.right = bisectRight;
bisectRight.left = bisectLeft;
return bisectRight;
}
var heap = crossfilter.heap = heap_by(crossfilter_identity);
heap.by = heap_by;
function heap_by(f) {
// Builds a binary heap within the specified array a[lo:hi]. The heap has the
// property such that the parent a[lo+i] is always less than or equal to its
// two children: a[lo+2*i+1] and a[lo+2*i+2].
function heap(a, lo, hi) {
var n = hi - lo,
i = (n >>> 1) + 1;
while (--i > 0) sift(a, i, n, lo);
return a;
}
// Sorts the specified array a[lo:hi] in descending order, assuming it is
// already a heap.
function sort(a, lo, hi) {
var n = hi - lo,
t;
while (--n > 0) t = a[lo], a[lo] = a[lo + n], a[lo + n] = t, sift(a, 1, n, lo);
return a;
}
// Sifts the element a[lo+i-1] down the heap, where the heap is the contiguous
// slice of array a[lo:lo+n]. This method can also be used to update the heap
// incrementally, without incurring the full cost of reconstructing the heap.
function sift(a, i, n, lo) {
var d = a[--lo + i],
x = f(d),
child;
while ((child = i << 1) <= n) {
if (child < n && f(a[lo + child]) > f(a[lo + child + 1])) child++;
if (x <= f(a[lo + child])) break;
a[lo + i] = a[lo + child];
i = child;
}
a[lo + i] = d;
}
heap.sort = sort;
return heap;
}
var heapselect = crossfilter.heapselect = heapselect_by(crossfilter_identity);
heapselect.by = heapselect_by;
function heapselect_by(f) {
var heap = heap_by(f);
// Returns a new array containing the top k elements in the array a[lo:hi].
// The returned array is not sorted, but maintains the heap property. If k is
// greater than hi - lo, then fewer than k elements will be returned. The
// order of elements in a is unchanged by this operation.
function heapselect(a, lo, hi, k) {
var queue = new Array(k = Math.min(hi - lo, k)),
min,
i,
x,
d;
for (i = 0; i < k; ++i) queue[i] = a[lo++];
heap(queue, 0, k);
if (lo < hi) {
min = f(queue[0]);
do {
if (x = f(d = a[lo]) > min) {
queue[0] = d;
min = f(heap(queue, 0, k)[0]);
}
} while (++lo < hi);
}
return queue;
}
return heapselect;
}
var insertionsort = crossfilter.insertionsort = insertionsort_by(crossfilter_identity);
insertionsort.by = insertionsort_by;
function insertionsort_by(f) {
function insertionsort(a, lo, hi) {
for (var i = lo + 1; i < hi; ++i) {
for (var j = i, t = a[i], x = f(t); j > lo && f(a[j - 1]) > x; --j) {
a[j] = a[j - 1];
}
a[j] = t;
}
return a;
}
return insertionsort;
}
// Algorithm designed by Vladimir Yaroslavskiy.
// Implementation based on the Dart project; see lib/dart/LICENSE for details.
var quicksort = crossfilter.quicksort = quicksort_by(crossfilter_identity);
quicksort.by = quicksort_by;
function quicksort_by(f) {
var insertionsort = insertionsort_by(f);
function sort(a, lo, hi) {
return (hi - lo < quicksort_sizeThreshold
? insertionsort
: quicksort)(a, lo, hi);
}
function quicksort(a, lo, hi) {
// Compute the two pivots by looking at 5 elements.
var sixth = (hi - lo) / 6 | 0,
i1 = lo + sixth,
i5 = hi - 1 - sixth,
i3 = lo + hi - 1 >> 1, // The midpoint.
i2 = i3 - sixth,
i4 = i3 + sixth;
var e1 = a[i1], x1 = f(e1),
e2 = a[i2], x2 = f(e2),
e3 = a[i3], x3 = f(e3),
e4 = a[i4], x4 = f(e4),
e5 = a[i5], x5 = f(e5);
var t;
// Sort the selected 5 elements using a sorting network.
if (x1 > x2) t = e1, e1 = e2, e2 = t, t = x1, x1 = x2, x2 = t;
if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t;
if (x1 > x3) t = e1, e1 = e3, e3 = t, t = x1, x1 = x3, x3 = t;
if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t;
if (x1 > x4) t = e1, e1 = e4, e4 = t, t = x1, x1 = x4, x4 = t;
if (x3 > x4) t = e3, e3 = e4, e4 = t, t = x3, x3 = x4, x4 = t;
if (x2 > x5) t = e2, e2 = e5, e5 = t, t = x2, x2 = x5, x5 = t;
if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t;
if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t;
var pivot1 = e2, pivotValue1 = x2,
pivot2 = e4, pivotValue2 = x4;
// e2 and e4 have been saved in the pivot variables. They will be written
// back, once the partitioning is finished.
a[i1] = e1;
a[i2] = a[lo];
a[i3] = e3;
a[i4] = a[hi - 1];
a[i5] = e5;
var less = lo + 1, // First element in the middle partition.
great = hi - 2; // Last element in the middle partition.
// Note that for value comparison, <, <=, >= and > coerce to a primitive via
// Object.prototype.valueOf; == and === do not, so in order to be consistent
// with natural order (such as for Date objects), we must do two compares.
var pivotsEqual = pivotValue1 <= pivotValue2 && pivotValue1 >= pivotValue2;
if (pivotsEqual) {
// Degenerated case where the partitioning becomes a dutch national flag
// problem.
//
// [ | < pivot | == pivot | unpartitioned | > pivot | ]
// ^ ^ ^ ^ ^
// left less k great right
//
// a[left] and a[right] are undefined and are filled after the
// partitioning.
//
// Invariants:
// 1) for x in ]left, less[ : x < pivot.
// 2) for x in [less, k[ : x == pivot.
// 3) for x in ]great, right[ : x > pivot.
for (var k = less; k <= great; ++k) {
var ek = a[k], xk = f(ek);
if (xk < pivotValue1) {
if (k !== less) {
a[k] = a[less];
a[less] = ek;
}
++less;
} else if (xk > pivotValue1) {
// Find the first element <= pivot in the range [k - 1, great] and
// put [:ek:] there. We know that such an element must exist:
// When k == less, then el3 (which is equal to pivot) lies in the
// interval. Otherwise a[k - 1] == pivot and the search stops at k-1.
// Note that in the latter case invariant 2 will be violated for a
// short amount of time. The invariant will be restored when the
// pivots are put into their final positions.
while (true) {
var greatValue = f(a[great]);
if (greatValue > pivotValue1) {
great--;
// This is the only location in the while-loop where a new
// iteration is started.
continue;
} else if (greatValue < pivotValue1) {
// Triple exchange.
a[k] = a[less];
a[less++] = a[great];
a[great--] = ek;
break;
} else {
a[k] = a[great];
a[great--] = ek;
// Note: if great < k then we will exit the outer loop and fix
// invariant 2 (which we just violated).
break;
}
}
}
}
} else {
// We partition the list into three parts:
// 1. < pivot1
// 2. >= pivot1 && <= pivot2
// 3. > pivot2
//
// During the loop we have:
// [ | < pivot1 | >= pivot1 && <= pivot2 | unpartitioned | > pivot2 | ]
// ^ ^ ^ ^ ^
// left less k great right
//
// a[left] and a[right] are undefined and are filled after the
// partitioning.
//
// Invariants:
// 1. for x in ]left, less[ : x < pivot1
// 2. for x in [less, k[ : pivot1 <= x && x <= pivot2
// 3. for x in ]great, right[ : x > pivot2
for (var k = less; k <= great; k++) {
var ek = a[k], xk = f(ek);
if (xk < pivotValue1) {
if (k !== less) {
a[k] = a[less];
a[less] = ek;
}
++less;
} else {
if (xk > pivotValue2) {
while (true) {
var greatValue = f(a[great]);
if (greatValue > pivotValue2) {
great--;
if (great < k) break;
// This is the only location inside the loop where a new
// iteration is started.
continue;
} else {
// a[great] <= pivot2.
if (greatValue < pivotValue1) {
// Triple exchange.
a[k] = a[less];
a[less++] = a[great];
a[great--] = ek;
} else {
// a[great] >= pivot1.
a[k] = a[great];
a[great--] = ek;
}
break;
}
}
}
}
}
}
// Move pivots into their final positions.
// We shrunk the list from both sides (a[left] and a[right] have
// meaningless values in them) and now we move elements from the first
// and third partition into these locations so that we can store the
// pivots.
a[lo] = a[less - 1];
a[less - 1] = pivot1;
a[hi - 1] = a[great + 1];
a[great + 1] = pivot2;
// The list is now partitioned into three partitions:
// [ < pivot1 | >= pivot1 && <= pivot2 | > pivot2 ]
// ^ ^ ^ ^
// left less great right
// Recursive descent. (Don't include the pivot values.)
sort(a, lo, less - 1);
sort(a, great + 2, hi);
if (pivotsEqual) {
// All elements in the second partition are equal to the pivot. No
// need to sort them.
return a;
}
// In theory it should be enough to call _doSort recursively on the second
// partition.
// The Android source however removes the pivot elements from the recursive
// call if the second partition is too large (more than 2/3 of the list).
if (less < i1 && great > i5) {
var lessValue, greatValue;
while ((lessValue = f(a[less])) <= pivotValue1 && lessValue >= pivotValue1) ++less;
while ((greatValue = f(a[great])) <= pivotValue2 && greatValue >= pivotValue2) --great;
// Copy paste of the previous 3-way partitioning with adaptions.
//
// We partition the list into three parts:
// 1. == pivot1
// 2. > pivot1 && < pivot2
// 3. == pivot2
//
// During the loop we have:
// [ == pivot1 | > pivot1 && < pivot2 | unpartitioned | == pivot2 ]
// ^ ^ ^
// less k great
//
// Invariants:
// 1. for x in [ *, less[ : x == pivot1
// 2. for x in [less, k[ : pivot1 < x && x < pivot2
// 3. for x in ]great, * ] : x == pivot2
for (var k = less; k <= great; k++) {
var ek = a[k], xk = f(ek);
if (xk <= pivotValue1 && xk >= pivotValue1) {
if (k !== less) {
a[k] = a[less];
a[less] = ek;
}
less++;
} else {
if (xk <= pivotValue2 && xk >= pivotValue2) {
while (true) {
var greatValue = f(a[great]);
if (greatValue <= pivotValue2 && greatValue >= pivotValue2) {
great--;
if (great < k) break;
// This is the only location inside the loop where a new
// iteration is started.
continue;
} else {
// a[great] < pivot2.
if (greatValue < pivotValue1) {
// Triple exchange.
a[k] = a[less];
a[less++] = a[great];
a[great--] = ek;
} else {
// a[great] == pivot1.
a[k] = a[great];
a[great--] = ek;
}
break;
}
}
}
}
}
}
// The second partition has now been cleared of pivot elements and looks
// as follows:
// [ * | > pivot1 && < pivot2 | * ]
// ^ ^
// less great
// Sort the second partition using recursive descent.
// The second partition looks as follows:
// [ * | >= pivot1 && <= pivot2 | * ]
// ^ ^
// less great
// Simply sort it by recursive descent.
return sort(a, less, great + 1);
}
return sort;
}
var quicksort_sizeThreshold = 32;
var crossfilter_array8 = crossfilter_arrayUntyped,
crossfilter_array16 = crossfilter_arrayUntyped,
crossfilter_array32 = crossfilter_arrayUntyped,
crossfilter_arrayLengthen = crossfilter_identity,
crossfilter_arrayWiden = crossfilter_identity;
if (typeof Uint8Array !== "undefined") {
crossfilter_array8 = function(n) { return new Uint8Array(n); };
crossfilter_array16 = function(n) { return new Uint16Array(n); };
crossfilter_array32 = function(n) { return new Uint32Array(n); };
crossfilter_arrayLengthen = function(array, length) {
var copy = new array.constructor(length);
copy.set(array);
return copy;
};
crossfilter_arrayWiden = function(array, width) {
var copy;
switch (width) {
case 16: copy = crossfilter_array16(array.length); break;
case 32: copy = crossfilter_array32(array.length); break;
default: throw new Error("invalid array width!");
}
copy.set(array);
return copy;
};
}
function crossfilter_arrayUntyped(n) {
return new Array(n);
}
function crossfilter_filterExact(bisect, value) {
return function(values) {
var n = values.length;
return [bisect.left(values, value, 0, n), bisect.right(values, value, 0, n)];
};
}
function crossfilter_filterRange(bisect, range) {
var min = range[0],
max = range[1];
return function(values) {
var n = values.length;
return [bisect.left(values, min, 0, n), bisect.left(values, max, 0, n)];
};
}
function crossfilter_filterAll(values) {
return [0, values.length];
}
function crossfilter_null() {
return null;
}
function crossfilter_zero() {
return 0;
}
function crossfilter_reduceIncrement(p) {
return p + 1;
}
function crossfilter_reduceDecrement(p) {
return p - 1;
}
function crossfilter_reduceAdd(f) {
return function(p, v) {
return p + +f(v);
};
}
function crossfilter_reduceSubtract(f) {
return function(p, v) {
return p - f(v);
};
}
exports.crossfilter = crossfilter;
function crossfilter() {
var crossfilter = {
add: add,
dimension: dimension,
groupAll: groupAll,
size: size
};
var data = [], // the records
n = 0, // the number of records; data.length
m = 0, // number of dimensions in use
M = 8, // number of dimensions that can fit in `filters`
filters = crossfilter_array8(0), // M bits per record; 1 is filtered out
filterListeners = [], // when the filters change
dataListeners = []; // when data is added
// Adds the specified new records to this crossfilter.
function add(newData) {
var n0 = n,
n1 = newData.length;
// If there's actually new data to add…
// Merge the new data into the existing data.
// Lengthen the filter bitset to handle the new records.
// Notify listeners (dimensions and groups) that new data is available.
if (n1) {
data = data.concat(newData);
filters = crossfilter_arrayLengthen(filters, n += n1);
dataListeners.forEach(function(l) { l(newData, n0, n1); });
}
return crossfilter;
}
// Adds a new dimension with the specified value accessor function.
function dimension(value) {
var dimension = {
filter: filter,
filterExact: filterExact,
filterRange: filterRange,
filterAll: filterAll,
top: top,
group: group,
groupAll: groupAll
};
var one = 1 << m++, // bit mask, e.g., 00001000
zero = ~one, // inverted one, e.g., 11110111
values, // sorted, cached array
index, // value rank ↦ object id
newValues, // temporary array storing newly-added values
newIndex, // temporary array storing newly-added index
sort = quicksort_by(function(i) { return newValues[i]; }),
refilter = crossfilter_filterAll, // for recomputing filter
indexListeners = [], // when data is added
lo0 = 0,
hi0 = 0;
// Updating a dimension is a two-stage process. First, we must update the
// associated filters for the newly-added records. Once all dimensions have
// updated their filters, the groups are notified to update.
dataListeners.unshift(preAdd);
dataListeners.push(postAdd);
// Incorporate any existing data into this dimension, and make sure that the
// filter bitset is wide enough to handle the new dimension.
if (m > M) filters = crossfilter_arrayWiden(filters, M <<= 1);
preAdd(data, 0, n);
postAdd(data, 0, n);
// Incorporates the specified new records into this dimension.
// This function is responsible for updating filters, values, and index.
function preAdd(newData, n0, n1) {
// Permute new values into natural order using a sorted index.
newValues = newData.map(value);
newIndex = sort(crossfilter_range(n1), 0, n1);
newValues = permute(newValues, newIndex);
// Bisect newValues to determine which new records are selected.
var bounds = refilter(newValues), lo1 = bounds[0], hi1 = bounds[1], i;
for (i = 0; i < lo1; ++i) filters[newIndex[i] + n0] |= one;
for (i = hi1; i < n1; ++i) filters[newIndex[i] + n0] |= one;
// If this dimension previously had no data, then we don't need to do the
// more expensive merge operation; use the new values and index as-is.
if (!n0) {
values = newValues;
index = newIndex;
lo0 = lo1;
hi0 = hi1;
return;
}
var oldValues = values,
oldIndex = index,
i0 = 0,
i1 = 0;
// Otherwise, create new arrays into which to merge new and old.
values = new Array(n);
index = crossfilter_index(n, n);
// Merge the old and new sorted values, and old and new index.
for (i = 0; i0 < n0 && i1 < n1; ++i) {
if (oldValues[i0] < newValues[i1]) {
values[i] = oldValues[i0];
index[i] = oldIndex[i0++];
} else {
values[i] = newValues[i1];
index[i] = newIndex[i1++] + n0;
}
}
// Add any remaining old values.
for (; i0 < n0; ++i0, ++i) {
values[i] = oldValues[i0];
index[i] = oldIndex[i0];
}
// Add any remaining new values.
for (; i1 < n1; ++i1, ++i) {
values[i] = newValues[i1];
index[i] = newIndex[i1] + n0;
}
// Bisect again to recompute lo0 and hi0.
bounds = refilter(values), lo0 = bounds[0], hi0 = bounds[1];
}
// When all filters have updated, notify index listeners of the new values.
function postAdd(newData, n0, n1) {
indexListeners.forEach(function(l) { l(newValues, newIndex, n0, n1); });
newValues = newIndex = null;
}
// Updates the selected values based on the specified bounds [lo, hi].
// This implementation is used by all the public filter methods.
function filterIndex(bounds) {
var i,
j,
k,
lo1 = bounds[0],
hi1 = bounds[1],
added = [],
removed = [];
// Fast incremental update based on previous lo index.
if (lo1 < lo0) {
for (i = lo1, j = Math.min(lo0, hi1); i < j; ++i) {
filters[k = index[i]] ^= one;
added.push(k);
}
} else if (lo1 > lo0) {
for (i = lo0, j = Math.min(lo1, hi0); i < j; ++i) {
filters[k = index[i]] ^= one;
removed.push(k);
}
}
// Fast incremental update based on previous hi index.
if (hi1 > hi0) {
for (i = Math.max(lo1, hi0), j = hi1; i < j; ++i) {
filters[k = index[i]] ^= one;
added.push(k);
}
} else if (hi1 < hi0) {
for (i = Math.max(lo0, hi1), j = hi0; i < j; ++i) {
filters[k = index[i]] ^= one;
removed.push(k);
}
}
lo0 = lo1;
hi0 = hi1;
filterListeners.forEach(function(l) { l(one, added, removed); });
return dimension;
}
// Filters this dimension using the specified range, value, or null.
// If the range is null, this is equivalent to filterAll.
// If the range is an array, this is equivalent to filterRange.
// Otherwise, this is equivalent to filterExact.
function filter(range) {
return range == null
? filterAll() : Array.isArray(range)
? filterRange(range)
: filterExact(range);
}
// Filters this dimension to select the exact value.
function filterExact(value) {
return filterIndex((refilter = crossfilter_filterExact(bisect, value))(values));
}
// Filters this dimension to select the specified range [lo, hi].
// The lower bound is inclusive, and the upper bound is exclusive.
function filterRange(range) {
return filterIndex((refilter = crossfilter_filterRange(bisect, range))(values));
}
// Clears any filters on this dimension.
function filterAll() {
return filterIndex((refilter = crossfilter_filterAll)(values));
}
// Returns the top K selected records, based on this dimension's order.
// Note: observes this dimension's filter, unlike group and groupAll.
function top(k) {
var array = [],
i = hi0,
j;
while (--i >= lo0 && k > 0) {
if (!filters[j = index[i]]) {
array.push(data[j]);
--k;
}
}
return array;
}
// Adds a new group to this dimension, using the specified key function.
function group(key) {
var group = {
top: top,
all: all,
reduce: reduce,
reduceCount: reduceCount,
reduceSum: reduceSum,
order: order,
orderNatural: orderNatural,
size: size
};
var groups, // array of {key, value}
groupIndex, // object id ↦ group id
groupWidth = 8,
groupCapacity = crossfilter_capacity(groupWidth),
k = 0, // cardinality
select,
heap,
reduceAdd,
reduceRemove,
reduceInitial,
update = crossfilter_null,
reset = crossfilter_null,
resetNeeded = true;
if (arguments.length < 1) key = crossfilter_identity;
// The group listens to the crossfilter for when any dimension changes, so
// that it can update the associated reduce values. It must also listen to
// the parent dimension for when data is added, and compute new keys.
filterListeners.push(update);
indexListeners.push(add);
// Incorporate any existing data into the grouping.
add(values, index, 0, n);
// Incorporates the specified new values into this group.
// This function is responsible for updating groups and groupIndex.
function add(newValues, newIndex, n0, n1) {
var oldGroups = groups,
reIndex = crossfilter_index(k, groupCapacity),
add = reduceAdd,
initial = reduceInitial,
k0 = k, // old cardinality
i0 = 0, // index of old group
i1 = 0, // index of new record
j, // object id
g0, // old group
x0, // old key
x1, // new key
g, // group to add
x; // key of group to add
// If a reset is needed, we don't need to update the reduce values.
if (resetNeeded) add = initial = crossfilter_null;
// Reset the new groups (k is a lower bound).
// Also, make sure that groupIndex exists and is long enough.
groups = new Array(k), k = 0;
groupIndex = k0 > 1 ? crossfilter_arrayLengthen(groupIndex, n) : crossfilter_index(n, groupCapacity);
// Get the first old key (x0 of g0), if it exists.
if (k0) x0 = (g0 = oldGroups[0]).key;
// Find the first new key (x1), skipping NaN keys.
while (i1 < n1 && !((x1 = key(newValues[i1])) >= x1)) ++i1;
// While new keys remain…
while (i1 < n1) {
// Determine the lesser of the two current keys; new and old.
// If there are no old keys remaining, then always add the new key.
if (g0 && x0 <= x1) {
g = g0, x = x0;
// Record the new index of the old group.
reIndex[i0] = k;
// Retrieve the next old key.
if (g0 = oldGroups[++i0]) x0 = g0.key;
} else {
g = {key: x1, value: initial()}, x = x1;
}
// Add the lesser group.
groups[k] = g;
// Add any selected records belonging to the added group, while
// advancing the new key and populating the associated group index.
while (!(x1 > x)) {
groupIndex[j = newIndex[i1] + n0] = k;
if (!(filters[j] & zero)) g.value = add(g.value, data[j]);
if (++i1 >= n1) break;
x1 = key(newValues[i1]);
}
groupIncrement();
}
// Add any remaining old groups that were greater than all new keys.
// No incremental reduce is needed; these groups have no new records.
// Also record the new index of the old group.
while (i0 < k0) {
groups[reIndex[i0] = k] = oldGroups[i0++];
groupIncrement();
}
// If we added any new groups before any old groups,
// update the group index of all the old records.
if (k > i0) for (i0 = 0; i0 < n0; ++i0) {
groupIndex[i0] = reIndex[groupIndex[i0]];
}
// Modify the update and reset behavior based on the cardinality.
// If the cardinality is less than or equal to one, then the groupIndex
// is not needed. If the cardinality is zero, then there are no records
// and therefore no groups to update or reset. Note that we also must
// change the registered listener to point to the new method.
j = filterListeners.indexOf(update);
if (k > 1) {
update = updateMany;
reset = resetMany;
} else {
if (k === 1) {
update = updateOne;
reset = resetOne;
} else {
update = crossfilter_null;
reset = crossfilter_null;
}
groupIndex = null;
}
filterListeners[j] = update;
// Count the number of added groups,
// and widen the group index as needed.
function groupIncrement() {
if (++k === groupCapacity) {
reIndex = crossfilter_arrayWiden(reIndex, groupWidth <<= 1);
groupIndex = crossfilter_arrayWiden(groupIndex, groupWidth);
groupCapacity = crossfilter_capacity(groupWidth);
}
}
}
// Reduces the specified selected or deselected records.
// This function is only used when the cardinality is greater than 1.
function updateMany(filterOne, added, removed) {
if (filterOne === one || resetNeeded) return;
var i,
k,
n,
g;
// Add the added values.
for (i = 0, n = added.length; i < n; ++i) {
if (!(filters[k = added[i]] & zero)) {
g = groups[groupIndex[k]];
g.value = reduceAdd(g.value, data[k]);
}
}
// Remove the removed values.
for (i = 0, n = removed.length; i < n; ++i) {
if ((filters[k = removed[i]] & zero) === filterOne) {
g = groups[groupIndex[k]];
g.value = reduceRemove(g.value, data[k]);
}
}
}
// Reduces the specified selected or deselected records.
// This function is only used when the cardinality is 1.
function updateOne(filterOne, added, removed) {
if (filterOne === one || resetNeeded) return;
var i,
k,
n,
g = groups[0];
// Add the added values.
for (i = 0, n = added.length; i < n; ++i) {
if (!(filters[k = added[i]] & zero)) {
g.value = reduceAdd(g.value, data[k]);
}
}
// Remove the removed values.
for (i = 0, n = removed.length; i < n; ++i) {
if ((filters[k = removed[i]] & zero) === filterOne) {
g.value = reduceRemove(g.value, data[k]);
}
}
}
// Recomputes the group reduce values from scratch.
// This function is only used when the cardinality is greater than 1.
function resetMany() {
var i,
g;
// Reset all group values.
for (i = 0; i < k; ++i) {
groups[i].value = reduceInitial();
}
// Add any selected records.
for (i = 0; i < n; ++i) {
if (!(filters[i] & zero)) {
g = groups[groupIndex[i]];
g.value = reduceAdd(g.value, data[i]);
}
}
}
// Recomputes the group reduce values from scratch.
// This function is only used when the cardinality is 1.
function resetOne() {
var i,
g = groups[0];
// Reset the singleton group values.
g.value = reduceInitial();
// Add any selected records.
for (i = 0; i < n; ++i) {
if (!(filters[i] & zero)) {
g.value = reduceAdd(g.value, data[i]);
}
}
}
// Returns the array of group values, in the dimension's natural order.
function all() {
if (resetNeeded) reset(), resetNeeded = false;
return groups;
}
// Returns a new array containing the top K group values, in reduce order.
function top(k) {
var top = select(all(), 0, groups.length, k);
return heap.sort(top, 0, top.length);
}
// Sets the reduce behavior for this group to use the specified functions.
// This method lazily recomputes the reduce values, waiting until needed.
function reduce(add, remove, initial) {
reduceAdd = add;
reduceRemove = remove;
reduceInitial = initial;
resetNeeded = true;
return group;
}
// A convenience method for reducing by count.
function reduceCount() {
return reduce(crossfilter_reduceIncrement, crossfilter_reduceDecrement, crossfilter_zero);
}
// A convenience method for reducing by sum(value).
function reduceSum(value) {
return reduce(crossfilter_reduceAdd(value), crossfilter_reduceSubtract(value), crossfilter_zero);
}
// Sets the reduce order, using the specified accessor.
function order(value) {
select = heapselect_by(valueOf);
heap = heap_by(valueOf);
function valueOf(d) { return value(d.value); }
return group;
}
// A convenience method for natural ordering by reduce value.
function orderNatural() {
return order(crossfilter_identity);
}
// Returns the cardinality of this group, irrespective of any filters.
function size() {
return k;
}
return reduceCount().orderNatural();
}
// A convenience function for generating a singleton group.
function groupAll() {
var g = group(crossfilter_null), all = g.all;
delete g.all;
delete g.top;
delete g.order;
delete g.orderNatural;
delete g.size;
g.value = function() { return all()[0].value; };
return g;
}
return dimension;
}
// A convenience method for groupAll on a dummy dimension.
// This implementation can be optimized since it is always cardinality 1.
function groupAll() {
var group = {
reduce: reduce,
reduceCount: reduceCount,
reduceSum: reduceSum,
value: value
};
var reduceValue,
reduceAdd,
reduceRemove,
reduceInitial,
resetNeeded = true;
// The group listens to the crossfilter for when any dimension changes, so
// that it can update the reduce value. It must also listen to the parent
// dimension for when data is added.
filterListeners.push(update);
dataListeners.push(add);
// For consistency; actually a no-op since resetNeeded is true.
add(data, 0, n);
// Incorporates the specified new values into this group.
function add(newData, n0, n1) {
var i;
if (resetNeeded) return;
// Add the added values.
for (i = n0; i < n; ++i) {
if (!filters[i]) {
reduceValue = reduceAdd(reduceValue, data[i]);
}
}
}
// Reduces the specified selected or deselected records.
function update(filterOne, added, removed) {
var i,
k,
n;
if (resetNeeded) return;
// Add the added values.
for (i = 0, n = added.length; i < n; ++i) {
if (!filters[k = added[i]]) {
reduceValue = reduceAdd(reduceValue, data[k]);
}
}
// Remove the removed values.
for (i = 0, n = removed.length; i < n; ++i) {
if (filters[k = removed[i]] === filterOne) {
reduceValue = reduceRemove(reduceValue, data[k]);
}
}
}
// Recomputes the group reduce value from scratch.
function reset() {
var i;
reduceValue = reduceInitial();
for (i = 0; i < n; ++i) {
if (!filters[i]) {
reduceValue = reduceAdd(reduceValue, data[i]);
}
}
}
// Sets the reduce behavior for this group to use the specified functions.
// This method lazily recomputes the reduce value, waiting until needed.
function reduce(add, remove, initial) {
reduceAdd = add;
reduceRemove = remove;
reduceInitial = initial;
resetNeeded = true;
return group;
}
// A convenience method for reducing by count.
function reduceCount() {
return reduce(crossfilter_reduceIncrement, crossfilter_reduceDecrement, crossfilter_zero);
}
// A convenience method for reducing by sum(value).
function reduceSum(value) {
return reduce(crossfilter_reduceAdd(value), crossfilter_reduceSubtract(value), crossfilter_zero);
}
// Returns the computed reduce value.
function value() {
if (resetNeeded) reset(), resetNeeded = false;
return reduceValue;
}
return reduceCount();
}
// Returns the number of records in this crossfilter, irrespective of any filters.
function size() {
return n;
}
return arguments.length
? add(arguments[0])
: crossfilter;
}
// Returns an array of size n, big enough to store ids up to m.
function crossfilter_index(n, m) {
return (m < 0x101
? crossfilter_array8 : m < 0x10001
? crossfilter_array16
: crossfilter_array32)(n);
}
// Constructs a new array of size n, with sequential values from 0 to n - 1.
function crossfilter_range(n) {
var range = crossfilter_index(n, n);
for (var i = -1; ++i < n;) range[i] = i;
return range;
}
function crossfilter_capacity(w) {
return w === 8
? 0x100 : w === 16
? 0x10000
: 0x100000000;
}
})(this);