forked from Archives/langchain
fd69cc7e42
Removed duplicate BaseModel dependencies in class inheritances. Also, sorted imports by `isort`.
143 lines
5.8 KiB
Python
143 lines
5.8 KiB
Python
"""Combining documents by doing a first pass and then refining on more documents."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Tuple
|
|
|
|
from pydantic import Extra, Field, root_validator
|
|
|
|
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.docstore.document import Document
|
|
from langchain.prompts.base import BasePromptTemplate
|
|
from langchain.prompts.prompt import PromptTemplate
|
|
|
|
|
|
def _get_default_document_prompt() -> PromptTemplate:
|
|
return PromptTemplate(input_variables=["page_content"], template="{page_content}")
|
|
|
|
|
|
class RefineDocumentsChain(BaseCombineDocumentsChain):
|
|
"""Combine documents by doing a first pass and then refining on more documents."""
|
|
|
|
initial_llm_chain: LLMChain
|
|
"""LLM chain to use on initial document."""
|
|
refine_llm_chain: LLMChain
|
|
"""LLM chain to use when refining."""
|
|
document_variable_name: str
|
|
"""The variable name in the initial_llm_chain to put the documents in.
|
|
If only one variable in the initial_llm_chain, this need not be provided."""
|
|
initial_response_name: str
|
|
"""The variable name to format the initial response in when refining."""
|
|
document_prompt: BasePromptTemplate = Field(
|
|
default_factory=_get_default_document_prompt
|
|
)
|
|
"""Prompt to use to format each document."""
|
|
return_intermediate_steps: bool = False
|
|
"""Return the results of the refine steps in the output."""
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = super().output_keys
|
|
if self.return_intermediate_steps:
|
|
_output_keys = _output_keys + ["intermediate_steps"]
|
|
return _output_keys
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator(pre=True)
|
|
def get_return_intermediate_steps(cls, values: Dict) -> Dict:
|
|
"""For backwards compatibility."""
|
|
if "return_refine_steps" in values:
|
|
values["return_intermediate_steps"] = values["return_refine_steps"]
|
|
del values["return_refine_steps"]
|
|
return values
|
|
|
|
@root_validator(pre=True)
|
|
def get_default_document_variable_name(cls, values: Dict) -> Dict:
|
|
"""Get default document variable name, if not provided."""
|
|
if "document_variable_name" not in values:
|
|
llm_chain_variables = values["initial_llm_chain"].prompt.input_variables
|
|
if len(llm_chain_variables) == 1:
|
|
values["document_variable_name"] = llm_chain_variables[0]
|
|
else:
|
|
raise ValueError(
|
|
"document_variable_name must be provided if there are "
|
|
"multiple llm_chain input_variables"
|
|
)
|
|
else:
|
|
llm_chain_variables = values["initial_llm_chain"].prompt.input_variables
|
|
if values["document_variable_name"] not in llm_chain_variables:
|
|
raise ValueError(
|
|
f"document_variable_name {values['document_variable_name']} was "
|
|
f"not found in llm_chain input_variables: {llm_chain_variables}"
|
|
)
|
|
return values
|
|
|
|
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
|
|
"""Combine by mapping first chain over all, then stuffing into final chain."""
|
|
inputs = self._construct_initial_inputs(docs, **kwargs)
|
|
res = self.initial_llm_chain.predict(**inputs)
|
|
refine_steps = [res]
|
|
for doc in docs[1:]:
|
|
base_inputs = self._construct_refine_inputs(doc, res)
|
|
inputs = {**base_inputs, **kwargs}
|
|
res = self.refine_llm_chain.predict(**inputs)
|
|
refine_steps.append(res)
|
|
return self._construct_result(refine_steps, res)
|
|
|
|
async def acombine_docs(
|
|
self, docs: List[Document], **kwargs: Any
|
|
) -> Tuple[str, dict]:
|
|
"""Combine by mapping first chain over all, then stuffing into final chain."""
|
|
inputs = self._construct_initial_inputs(docs, **kwargs)
|
|
res = await self.initial_llm_chain.apredict(**inputs)
|
|
refine_steps = [res]
|
|
for doc in docs[1:]:
|
|
base_inputs = self._construct_refine_inputs(doc, res)
|
|
inputs = {**base_inputs, **kwargs}
|
|
res = await self.refine_llm_chain.apredict(**inputs)
|
|
refine_steps.append(res)
|
|
return self._construct_result(refine_steps, res)
|
|
|
|
def _construct_result(self, refine_steps: List[str], res: str) -> Tuple[str, dict]:
|
|
if self.return_intermediate_steps:
|
|
extra_return_dict = {"intermediate_steps": refine_steps}
|
|
else:
|
|
extra_return_dict = {}
|
|
return res, extra_return_dict
|
|
|
|
def _construct_refine_inputs(self, doc: Document, res: str) -> Dict[str, Any]:
|
|
base_info = {"page_content": doc.page_content}
|
|
base_info.update(doc.metadata)
|
|
document_info = {k: base_info[k] for k in self.document_prompt.input_variables}
|
|
base_inputs = {
|
|
self.document_variable_name: self.document_prompt.format(**document_info),
|
|
self.initial_response_name: res,
|
|
}
|
|
return base_inputs
|
|
|
|
def _construct_initial_inputs(
|
|
self, docs: List[Document], **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
base_info = {"page_content": docs[0].page_content}
|
|
base_info.update(docs[0].metadata)
|
|
document_info = {k: base_info[k] for k in self.document_prompt.input_variables}
|
|
base_inputs: dict = {
|
|
self.document_variable_name: self.document_prompt.format(**document_info)
|
|
}
|
|
inputs = {**base_inputs, **kwargs}
|
|
return inputs
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "refine_documents_chain"
|