forked from Archives/langchain
f9edf76e7c
This adds implementation of MMR search in pinecone; and I have two semi-related observations about this vector store class: - Maybe we should also have a `similarity_search_by_vector_returning_embeddings` like in supabase, but it's not in the base `VectorStore` class so I didn't implement - Talking about the base class, there's `similarity_search_with_relevance_scores`, but in pinecone it is called `similarity_search_with_score`; maybe we should consider renaming it to align with other `VectorStore` base and sub classes (or add that as an alias for backward compatibility) #### Who can review? Tag maintainers/contributors who might be interested: - VectorStores / Retrievers / Memory - @dev2049
348 lines
12 KiB
Python
348 lines
12 KiB
Python
"""Wrapper around Pinecone vector database."""
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
import uuid
|
|
from typing import Any, Callable, Iterable, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.vectorstores.base import VectorStore
|
|
from langchain.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Pinecone(VectorStore):
|
|
"""Wrapper around Pinecone vector database.
|
|
|
|
To use, you should have the ``pinecone-client`` python package installed.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.vectorstores import Pinecone
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
import pinecone
|
|
|
|
# The environment should be the one specified next to the API key
|
|
# in your Pinecone console
|
|
pinecone.init(api_key="***", environment="...")
|
|
index = pinecone.Index("langchain-demo")
|
|
embeddings = OpenAIEmbeddings()
|
|
vectorstore = Pinecone(index, embeddings.embed_query, "text")
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
index: Any,
|
|
embedding_function: Callable,
|
|
text_key: str,
|
|
namespace: Optional[str] = None,
|
|
):
|
|
"""Initialize with Pinecone client."""
|
|
try:
|
|
import pinecone
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import pinecone python package. "
|
|
"Please install it with `pip install pinecone-client`."
|
|
)
|
|
if not isinstance(index, pinecone.index.Index):
|
|
raise ValueError(
|
|
f"client should be an instance of pinecone.index.Index, "
|
|
f"got {type(index)}"
|
|
)
|
|
self._index = index
|
|
self._embedding_function = embedding_function
|
|
self._text_key = text_key
|
|
self._namespace = namespace
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
namespace: Optional[str] = None,
|
|
batch_size: int = 32,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
ids: Optional list of ids to associate with the texts.
|
|
namespace: Optional pinecone namespace to add the texts to.
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
|
|
"""
|
|
if namespace is None:
|
|
namespace = self._namespace
|
|
# Embed and create the documents
|
|
docs = []
|
|
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
|
for i, text in enumerate(texts):
|
|
embedding = self._embedding_function(text)
|
|
metadata = metadatas[i] if metadatas else {}
|
|
metadata[self._text_key] = text
|
|
docs.append((ids[i], embedding, metadata))
|
|
# upsert to Pinecone
|
|
self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size)
|
|
return ids
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
namespace: Optional[str] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return pinecone documents most similar to query, along with scores.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter: Dictionary of argument(s) to filter on metadata
|
|
namespace: Namespace to search in. Default will search in '' namespace.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
if namespace is None:
|
|
namespace = self._namespace
|
|
query_obj = self._embedding_function(query)
|
|
docs = []
|
|
results = self._index.query(
|
|
[query_obj],
|
|
top_k=k,
|
|
include_metadata=True,
|
|
namespace=namespace,
|
|
filter=filter,
|
|
)
|
|
for res in results["matches"]:
|
|
metadata = res["metadata"]
|
|
if self._text_key in metadata:
|
|
text = metadata.pop(self._text_key)
|
|
score = res["score"]
|
|
docs.append((Document(page_content=text, metadata=metadata), score))
|
|
else:
|
|
logger.warning(
|
|
f"Found document with no `{self._text_key}` key. Skipping."
|
|
)
|
|
return docs
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
namespace: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return pinecone documents most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter: Dictionary of argument(s) to filter on metadata
|
|
namespace: Namespace to search in. Default will search in '' namespace.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query, k=k, filter=filter, namespace=namespace, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[dict] = None,
|
|
namespace: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
if namespace is None:
|
|
namespace = self._namespace
|
|
results = self._index.query(
|
|
[embedding],
|
|
top_k=fetch_k,
|
|
include_values=True,
|
|
include_metadata=True,
|
|
namespace=namespace,
|
|
filter=filter,
|
|
)
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array([embedding], dtype=np.float32),
|
|
[item["values"] for item in results["matches"]],
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
selected = [results["matches"][i]["metadata"] for i in mmr_selected]
|
|
return [
|
|
Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
|
|
for metadata in selected
|
|
]
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[dict] = None,
|
|
namespace: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
embedding = self._embedding_function(query)
|
|
return self.max_marginal_relevance_search_by_vector(
|
|
embedding, k, fetch_k, lambda_mult, filter, namespace
|
|
)
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
batch_size: int = 32,
|
|
text_key: str = "text",
|
|
index_name: Optional[str] = None,
|
|
namespace: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> Pinecone:
|
|
"""Construct Pinecone wrapper from raw documents.
|
|
|
|
This is a user friendly interface that:
|
|
1. Embeds documents.
|
|
2. Adds the documents to a provided Pinecone index
|
|
|
|
This is intended to be a quick way to get started.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain import Pinecone
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
import pinecone
|
|
|
|
# The environment should be the one specified next to the API key
|
|
# in your Pinecone console
|
|
pinecone.init(api_key="***", environment="...")
|
|
embeddings = OpenAIEmbeddings()
|
|
pinecone = Pinecone.from_texts(
|
|
texts,
|
|
embeddings,
|
|
index_name="langchain-demo"
|
|
)
|
|
"""
|
|
try:
|
|
import pinecone
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import pinecone python package. "
|
|
"Please install it with `pip install pinecone-client`."
|
|
)
|
|
|
|
indexes = pinecone.list_indexes() # checks if provided index exists
|
|
|
|
if index_name in indexes:
|
|
index = pinecone.Index(index_name)
|
|
elif len(indexes) == 0:
|
|
raise ValueError(
|
|
"No active indexes found in your Pinecone project, "
|
|
"are you sure you're using the right API key and environment?"
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Index '{index_name}' not found in your Pinecone project. "
|
|
f"Did you mean one of the following indexes: {', '.join(indexes)}"
|
|
)
|
|
|
|
for i in range(0, len(texts), batch_size):
|
|
# set end position of batch
|
|
i_end = min(i + batch_size, len(texts))
|
|
# get batch of texts and ids
|
|
lines_batch = texts[i:i_end]
|
|
# create ids if not provided
|
|
if ids:
|
|
ids_batch = ids[i:i_end]
|
|
else:
|
|
ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
|
|
# create embeddings
|
|
embeds = embedding.embed_documents(lines_batch)
|
|
# prep metadata and upsert batch
|
|
if metadatas:
|
|
metadata = metadatas[i:i_end]
|
|
else:
|
|
metadata = [{} for _ in range(i, i_end)]
|
|
for j, line in enumerate(lines_batch):
|
|
metadata[j][text_key] = line
|
|
to_upsert = zip(ids_batch, embeds, metadata)
|
|
|
|
# upsert to Pinecone
|
|
index.upsert(vectors=list(to_upsert), namespace=namespace)
|
|
return cls(index, embedding.embed_query, text_key, namespace)
|
|
|
|
@classmethod
|
|
def from_existing_index(
|
|
cls,
|
|
index_name: str,
|
|
embedding: Embeddings,
|
|
text_key: str = "text",
|
|
namespace: Optional[str] = None,
|
|
) -> Pinecone:
|
|
"""Load pinecone vectorstore from index name."""
|
|
try:
|
|
import pinecone
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import pinecone python package. "
|
|
"Please install it with `pip install pinecone-client`."
|
|
)
|
|
|
|
return cls(
|
|
pinecone.Index(index_name), embedding.embed_query, text_key, namespace
|
|
)
|