langchain/docs/modules/llms/examples/llm_serialization.ipynb
Harrison Chase 985496f4be
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:

- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.

There is also a full reference section, as well as extra resources
(glossary, gallery, etc)

Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 08:24:09 -08:00

169 lines
3.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "73f9bf40",
"metadata": {},
"source": [
"# LLM Serialization\n",
"\n",
"This notebook walks how to write and read an LLM Configuration to and from disk. This is useful if you want to save the configuration for a given LLM (eg the provider, the temperature, etc)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9c9fb6ff",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.llms.loading import load_llm"
]
},
{
"cell_type": "markdown",
"id": "88ce018b",
"metadata": {},
"source": [
"## Loading\n",
"First, lets go over loading a LLM from disk. LLMs can be saved on disk in two formats: json or yaml. No matter the extension, they are loaded in the same way."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f12b28f3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"model_name\": \"text-davinci-003\",\r\n",
" \"temperature\": 0.7,\r\n",
" \"max_tokens\": 256,\r\n",
" \"top_p\": 1.0,\r\n",
" \"frequency_penalty\": 0.0,\r\n",
" \"presence_penalty\": 0.0,\r\n",
" \"n\": 1,\r\n",
" \"best_of\": 1,\r\n",
" \"request_timeout\": null,\r\n",
" \"_type\": \"openai\"\r\n",
"}"
]
}
],
"source": [
"!cat llm.json"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9ab709fc",
"metadata": {},
"outputs": [],
"source": [
"llm = load_llm(\"llm.json\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "095b1d56",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"_type: openai\r\n",
"best_of: 1\r\n",
"frequency_penalty: 0.0\r\n",
"max_tokens: 256\r\n",
"model_name: text-davinci-003\r\n",
"n: 1\r\n",
"presence_penalty: 0.0\r\n",
"request_timeout: null\r\n",
"temperature: 0.7\r\n",
"top_p: 1.0\r\n"
]
}
],
"source": [
"!cat llm.yaml"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8cafaafe",
"metadata": {},
"outputs": [],
"source": [
"llm = load_llm(\"llm.yaml\")"
]
},
{
"cell_type": "markdown",
"id": "ab3e4223",
"metadata": {},
"source": [
"## Saving\n",
"If you want to go from a LLM in memory to a serialized version of it, you can do so easily by calling the `.save` method. Again, this supports both json and yaml."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b38f685d",
"metadata": {},
"outputs": [],
"source": [
"llm.save(\"llm.json\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b7365503",
"metadata": {},
"outputs": [],
"source": [
"llm.save(\"llm.yaml\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "68e45b1c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}