forked from Archives/langchain
b96ab4b763
# Docs: improvements in the `retrievers/examples/` notebooks Its primary purpose is to make the Jupyter notebook examples **consistent** and more suitable for first-time viewers. - add links to the integration source (if applicable) with a short description of this source; - removed `_retriever` suffix from the file names (where it existed) for consistency; - removed ` retriever` from the notebook title (where it existed) for consistency; - added code to install necessary Python package(s); - added code to set up the necessary API Key. - very small fixes in notebooks from other folders (for consistency): - docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb - docs/modules/indexes/vectorstores/examples/pinecone.ipynb - docs/modules/models/llms/integrations/cohere.ipynb - fixed misspelling in langchain/retrievers/time_weighted_retriever.py comment (sorry, about this change in a .py file ) ## Who can review @dev2049
113 lines
2.6 KiB
Plaintext
113 lines
2.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ab66dd43",
|
|
"metadata": {},
|
|
"source": [
|
|
"# kNN\n",
|
|
"\n",
|
|
">In statistics, the [k-nearest neighbors algorithm (k-NN)](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression.\n",
|
|
"\n",
|
|
"This notebook goes over how to use a retriever that under the hood uses an kNN.\n",
|
|
"\n",
|
|
"Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "393ac030",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.retrievers import KNNRetriever\n",
|
|
"from langchain.embeddings import OpenAIEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aaf80e7f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create New Retriever with Texts"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "98b1c017",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = KNNRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"], OpenAIEmbeddings())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "08437fa2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use Retriever\n",
|
|
"\n",
|
|
"We can now use the retriever!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "c0455218",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"result = retriever.get_relevant_documents(\"foo\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "7dfa5c29",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='foo', metadata={}),\n",
|
|
" Document(page_content='foo bar', metadata={}),\n",
|
|
" Document(page_content='hello', metadata={}),\n",
|
|
" Document(page_content='bar', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"result"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|