forked from Archives/langchain
f72bb966f8
Co-authored-by: David Revillas <26328973+r3v1@users.noreply.github.com>
173 lines
5.0 KiB
Plaintext
173 lines
5.0 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "80f6cd99",
|
|
"metadata": {},
|
|
"source": [
|
|
"# HTML\n",
|
|
"\n",
|
|
">[HTML](https://en.wikipedia.org/wiki/HMTL) s the standard markup language for documents designed to be displayed in a web browser.\n",
|
|
"\n",
|
|
"`HtmlTextSplitter` splits text along Markdown headings, code blocks, or horizontal rules. It's implemented as a simple subclass of `RecursiveCharacterSplitter` with HTML-specific separators. See the source code to see the HTML syntax expected by default.\n",
|
|
"\n",
|
|
"1. How the text is split: by list of `HTML` specific separators\n",
|
|
"2. How the chunk size is measured: by number of characters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "96d64839",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.text_splitter import HtmlTextSplitter"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "cfb0da17",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"html_text = \"\"\"\n",
|
|
"<!DOCTYPE html>\n",
|
|
"<html>\n",
|
|
" <head>\n",
|
|
" <title>🦜️🔗 LangChain</title>\n",
|
|
" <style>\n",
|
|
" body {\n",
|
|
" font-family: Arial, sans-serif;\n",
|
|
" }\n",
|
|
" h1 {\n",
|
|
" color: darkblue;\n",
|
|
" }\n",
|
|
" </style>\n",
|
|
" </head>\n",
|
|
" <body>\n",
|
|
" <div>\n",
|
|
" <h1>🦜️🔗 LangChain</h1>\n",
|
|
" <p>⚡ Building applications with LLMs through composability ⚡</p>\n",
|
|
" </div>\n",
|
|
" <div>\n",
|
|
" As an open source project in a rapidly developing field, we are extremely open to contributions.\n",
|
|
" </div>\n",
|
|
" </body>\n",
|
|
"</html>\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"html_splitter = HtmlTextSplitter(chunk_size=175, chunk_overlap=20)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "d59a4fe8",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = html_splitter.create_documents([html_text])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "cbb2e100",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='<!DOCTYPE html>\\n<html>', metadata={}),\n",
|
|
" Document(page_content='<title>🦜️🔗 LangChain</title>', metadata={}),\n",
|
|
" Document(page_content='body {\\n font-family: Arial, sans-serif;\\n }\\n h1 {\\n color: darkblue;\\n }\\n </style>\\n </head>', metadata={}),\n",
|
|
" Document(page_content='/style>\\n </head>', metadata={}),\n",
|
|
" Document(page_content='<div>\\n <h1>🦜️🔗 LangChain</h1>\\n <p>⚡ Building applications with LLMs through composability ⚡</p>\\n </div>', metadata={}),\n",
|
|
" Document(page_content='As an open source project in a rapidly developing field, we are extremely open to contributions.\\n </div>\\n </body>\\n</html>', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"docs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "91b56e7e-b285-4ca4-a786-149544e0e3c6",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['<!DOCTYPE html>\\n<html>',\n",
|
|
" '<title>🦜️🔗 LangChain</title>',\n",
|
|
" 'body {\\n font-family: Arial, sans-serif;\\n }\\n h1 {\\n color: darkblue;\\n }\\n </style>\\n </head>',\n",
|
|
" '/style>\\n </head>',\n",
|
|
" '<div>\\n <h1>🦜️🔗 LangChain</h1>\\n <p>⚡ Building applications with LLMs through composability ⚡</p>\\n </div>',\n",
|
|
" 'As an open source project in a rapidly developing field, we are extremely open to contributions.\\n </div>\\n </body>\\n</html>']"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"html_splitter.split_text(html_text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9bee7858-9175-4d99-bd30-68f2dece8601",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.10"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|