forked from Archives/langchain
df6865cd52
The endpoint default is inf if we don't specify max_tokens, so unlike regular completion API, we don't need to calculate this based on the prompt.
720 lines
26 KiB
Python
720 lines
26 KiB
Python
"""Wrapper around OpenAI APIs."""
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
import sys
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Set,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
from pydantic import BaseModel, Extra, Field, root_validator
|
|
from tenacity import (
|
|
before_sleep_log,
|
|
retry,
|
|
retry_if_exception_type,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
from langchain.llms.base import BaseLLM
|
|
from langchain.schema import Generation, LLMResult
|
|
from langchain.utils import get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def update_token_usage(
|
|
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
|
|
) -> None:
|
|
"""Update token usage."""
|
|
_keys_to_use = keys.intersection(response["usage"])
|
|
for _key in _keys_to_use:
|
|
if _key not in token_usage:
|
|
token_usage[_key] = response["usage"][_key]
|
|
else:
|
|
token_usage[_key] += response["usage"][_key]
|
|
|
|
|
|
def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
|
|
"""Update response from the stream response."""
|
|
response["choices"][0]["text"] += stream_response["choices"][0]["text"]
|
|
response["choices"][0]["finish_reason"] = stream_response["choices"][0][
|
|
"finish_reason"
|
|
]
|
|
response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"]
|
|
|
|
|
|
def _streaming_response_template() -> Dict[str, Any]:
|
|
return {
|
|
"choices": [
|
|
{
|
|
"text": "",
|
|
"finish_reason": None,
|
|
"logprobs": None,
|
|
}
|
|
]
|
|
}
|
|
|
|
|
|
def _create_retry_decorator(llm: Union[BaseOpenAI, OpenAIChat]) -> Callable[[Any], Any]:
|
|
import openai
|
|
|
|
min_seconds = 4
|
|
max_seconds = 10
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
return retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
retry=(
|
|
retry_if_exception_type(openai.error.Timeout)
|
|
| retry_if_exception_type(openai.error.APIError)
|
|
| retry_if_exception_type(openai.error.APIConnectionError)
|
|
| retry_if_exception_type(openai.error.RateLimitError)
|
|
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
|
),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)
|
|
|
|
|
|
def completion_with_retry(llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
@retry_decorator
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
return llm.client.create(**kwargs)
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
async def acompletion_with_retry(
|
|
llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any
|
|
) -> Any:
|
|
"""Use tenacity to retry the async completion call."""
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
@retry_decorator
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
|
|
return await llm.client.acreate(**kwargs)
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
class BaseOpenAI(BaseLLM, BaseModel):
|
|
"""Wrapper around OpenAI large language models.
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
environment variable ``OPENAI_API_KEY`` set with your API key.
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.llms import OpenAI
|
|
openai = OpenAI(model_name="text-davinci-003")
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
model_name: str = "text-davinci-003"
|
|
"""Model name to use."""
|
|
temperature: float = 0.7
|
|
"""What sampling temperature to use."""
|
|
max_tokens: int = 256
|
|
"""The maximum number of tokens to generate in the completion.
|
|
-1 returns as many tokens as possible given the prompt and
|
|
the models maximal context size."""
|
|
top_p: float = 1
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
frequency_penalty: float = 0
|
|
"""Penalizes repeated tokens according to frequency."""
|
|
presence_penalty: float = 0
|
|
"""Penalizes repeated tokens."""
|
|
n: int = 1
|
|
"""How many completions to generate for each prompt."""
|
|
best_of: int = 1
|
|
"""Generates best_of completions server-side and returns the "best"."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
openai_api_key: Optional[str] = None
|
|
batch_size: int = 20
|
|
"""Batch size to use when passing multiple documents to generate."""
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
|
|
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
|
|
"""Adjust the probability of specific tokens being generated."""
|
|
max_retries: int = 6
|
|
"""Maximum number of retries to make when generating."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore
|
|
"""Initialize the OpenAI object."""
|
|
if data.get("model_name", "").startswith("gpt-3.5-turbo"):
|
|
return OpenAIChat(**data)
|
|
return super().__new__(cls)
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.ignore
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
{field_name} was transfered to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
openai_api_key = get_from_dict_or_env(
|
|
values, "openai_api_key", "OPENAI_API_KEY"
|
|
)
|
|
try:
|
|
import openai
|
|
|
|
openai.api_key = openai_api_key
|
|
values["client"] = openai.Completion
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import openai python package. "
|
|
"Please it install it with `pip install openai`."
|
|
)
|
|
if values["streaming"] and values["n"] > 1:
|
|
raise ValueError("Cannot stream results when n > 1.")
|
|
if values["streaming"] and values["best_of"] > 1:
|
|
raise ValueError("Cannot stream results when best_of > 1.")
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
normal_params = {
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"top_p": self.top_p,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
"presence_penalty": self.presence_penalty,
|
|
"n": self.n,
|
|
"best_of": self.best_of,
|
|
"request_timeout": self.request_timeout,
|
|
"logit_bias": self.logit_bias,
|
|
}
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
def _generate(
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
|
) -> LLMResult:
|
|
"""Call out to OpenAI's endpoint with k unique prompts.
|
|
|
|
Args:
|
|
prompts: The prompts to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The full LLM output.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = openai.generate(["Tell me a joke."])
|
|
"""
|
|
# TODO: write a unit test for this
|
|
params = self._invocation_params
|
|
sub_prompts = self.get_sub_prompts(params, prompts, stop)
|
|
choices = []
|
|
token_usage: Dict[str, int] = {}
|
|
# Get the token usage from the response.
|
|
# Includes prompt, completion, and total tokens used.
|
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
|
for _prompts in sub_prompts:
|
|
if self.streaming:
|
|
if len(_prompts) > 1:
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|
params["stream"] = True
|
|
response = _streaming_response_template()
|
|
for stream_resp in completion_with_retry(
|
|
self, prompt=_prompts, **params
|
|
):
|
|
self.callback_manager.on_llm_new_token(
|
|
stream_resp["choices"][0]["text"],
|
|
verbose=self.verbose,
|
|
logprobs=stream_resp["choices"][0]["logprobs"],
|
|
)
|
|
_update_response(response, stream_resp)
|
|
choices.extend(response["choices"])
|
|
else:
|
|
response = completion_with_retry(self, prompt=_prompts, **params)
|
|
choices.extend(response["choices"])
|
|
if not self.streaming:
|
|
# Can't update token usage if streaming
|
|
update_token_usage(_keys, response, token_usage)
|
|
return self.create_llm_result(choices, prompts, token_usage)
|
|
|
|
async def _agenerate(
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
|
) -> LLMResult:
|
|
"""Call out to OpenAI's endpoint async with k unique prompts."""
|
|
params = self._invocation_params
|
|
sub_prompts = self.get_sub_prompts(params, prompts, stop)
|
|
choices = []
|
|
token_usage: Dict[str, int] = {}
|
|
# Get the token usage from the response.
|
|
# Includes prompt, completion, and total tokens used.
|
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
|
for _prompts in sub_prompts:
|
|
if self.streaming:
|
|
if len(_prompts) > 1:
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|
params["stream"] = True
|
|
response = _streaming_response_template()
|
|
async for stream_resp in await acompletion_with_retry(
|
|
self, prompt=_prompts, **params
|
|
):
|
|
if self.callback_manager.is_async:
|
|
await self.callback_manager.on_llm_new_token(
|
|
stream_resp["choices"][0]["text"],
|
|
verbose=self.verbose,
|
|
logprobs=stream_resp["choices"][0]["logprobs"],
|
|
)
|
|
else:
|
|
self.callback_manager.on_llm_new_token(
|
|
stream_resp["choices"][0]["text"],
|
|
verbose=self.verbose,
|
|
logprobs=stream_resp["choices"][0]["logprobs"],
|
|
)
|
|
_update_response(response, stream_resp)
|
|
choices.extend(response["choices"])
|
|
else:
|
|
response = await acompletion_with_retry(self, prompt=_prompts, **params)
|
|
choices.extend(response["choices"])
|
|
if not self.streaming:
|
|
# Can't update token usage if streaming
|
|
update_token_usage(_keys, response, token_usage)
|
|
return self.create_llm_result(choices, prompts, token_usage)
|
|
|
|
def get_sub_prompts(
|
|
self,
|
|
params: Dict[str, Any],
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
) -> List[List[str]]:
|
|
"""Get the sub prompts for llm call."""
|
|
if stop is not None:
|
|
if "stop" in params:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
params["stop"] = stop
|
|
if params["max_tokens"] == -1:
|
|
if len(prompts) != 1:
|
|
raise ValueError(
|
|
"max_tokens set to -1 not supported for multiple inputs."
|
|
)
|
|
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
|
|
sub_prompts = [
|
|
prompts[i : i + self.batch_size]
|
|
for i in range(0, len(prompts), self.batch_size)
|
|
]
|
|
return sub_prompts
|
|
|
|
def create_llm_result(
|
|
self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
|
|
) -> LLMResult:
|
|
"""Create the LLMResult from the choices and prompts."""
|
|
generations = []
|
|
for i, _ in enumerate(prompts):
|
|
sub_choices = choices[i * self.n : (i + 1) * self.n]
|
|
generations.append(
|
|
[
|
|
Generation(
|
|
text=choice["text"],
|
|
generation_info=dict(
|
|
finish_reason=choice.get("finish_reason"),
|
|
logprobs=choice.get("logprobs"),
|
|
),
|
|
)
|
|
for choice in sub_choices
|
|
]
|
|
)
|
|
return LLMResult(
|
|
generations=generations, llm_output={"token_usage": token_usage}
|
|
)
|
|
|
|
def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
|
|
"""Call OpenAI with streaming flag and return the resulting generator.
|
|
|
|
BETA: this is a beta feature while we figure out the right abstraction.
|
|
Once that happens, this interface could change.
|
|
|
|
Args:
|
|
prompt: The prompts to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
A generator representing the stream of tokens from OpenAI.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
generator = openai.stream("Tell me a joke.")
|
|
for token in generator:
|
|
yield token
|
|
"""
|
|
params = self.prep_streaming_params(stop)
|
|
generator = self.client.create(prompt=prompt, **params)
|
|
|
|
return generator
|
|
|
|
def prep_streaming_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
|
|
"""Prepare the params for streaming."""
|
|
params = self._invocation_params
|
|
if params["best_of"] != 1:
|
|
raise ValueError("OpenAI only supports best_of == 1 for streaming")
|
|
if stop is not None:
|
|
if "stop" in params:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
params["stop"] = stop
|
|
params["stream"] = True
|
|
return params
|
|
|
|
@property
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model."""
|
|
return self._default_params
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{"model_name": self.model_name}, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "openai"
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
"""Calculate num tokens with tiktoken package."""
|
|
# tiktoken NOT supported for Python 3.8 or below
|
|
if sys.version_info[1] <= 8:
|
|
return super().get_num_tokens(text)
|
|
try:
|
|
import tiktoken
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import tiktoken python package. "
|
|
"This is needed in order to calculate get_num_tokens. "
|
|
"Please it install it with `pip install tiktoken`."
|
|
)
|
|
encoder = "gpt2"
|
|
if self.model_name in ("text-davinci-003", "text-davinci-002"):
|
|
encoder = "p50k_base"
|
|
if self.model_name.startswith("code"):
|
|
encoder = "p50k_base"
|
|
# create a GPT-3 encoder instance
|
|
enc = tiktoken.get_encoding(encoder)
|
|
|
|
# encode the text using the GPT-3 encoder
|
|
tokenized_text = enc.encode(text)
|
|
|
|
# calculate the number of tokens in the encoded text
|
|
return len(tokenized_text)
|
|
|
|
def modelname_to_contextsize(self, modelname: str) -> int:
|
|
"""Calculate the maximum number of tokens possible to generate for a model.
|
|
|
|
text-davinci-003: 4,097 tokens
|
|
text-curie-001: 2,048 tokens
|
|
text-babbage-001: 2,048 tokens
|
|
text-ada-001: 2,048 tokens
|
|
code-davinci-002: 8,000 tokens
|
|
code-cushman-001: 2,048 tokens
|
|
|
|
Args:
|
|
modelname: The modelname we want to know the context size for.
|
|
|
|
Returns:
|
|
The maximum context size
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
|
|
"""
|
|
if modelname == "text-davinci-003":
|
|
return 4097
|
|
elif modelname == "text-curie-001":
|
|
return 2048
|
|
elif modelname == "text-babbage-001":
|
|
return 2048
|
|
elif modelname == "text-ada-001":
|
|
return 2048
|
|
elif modelname == "code-davinci-002":
|
|
return 8000
|
|
elif modelname == "code-cushman-001":
|
|
return 2048
|
|
else:
|
|
return 4097
|
|
|
|
def max_tokens_for_prompt(self, prompt: str) -> int:
|
|
"""Calculate the maximum number of tokens possible to generate for a prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The maximum number of tokens to generate for a prompt.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
|
|
"""
|
|
num_tokens = self.get_num_tokens(prompt)
|
|
|
|
# get max context size for model by name
|
|
max_size = self.modelname_to_contextsize(self.model_name)
|
|
return max_size - num_tokens
|
|
|
|
|
|
class OpenAI(BaseOpenAI):
|
|
"""Generic OpenAI class that uses model name."""
|
|
|
|
@property
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
|
return {**{"model": self.model_name}, **super()._invocation_params}
|
|
|
|
|
|
class AzureOpenAI(BaseOpenAI):
|
|
"""Azure specific OpenAI class that uses deployment name."""
|
|
|
|
deployment_name: str = ""
|
|
"""Deployment name to use."""
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
return {
|
|
**{"deployment_name": self.deployment_name},
|
|
**super()._identifying_params,
|
|
}
|
|
|
|
@property
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
|
return {**{"engine": self.deployment_name}, **super()._invocation_params}
|
|
|
|
|
|
class OpenAIChat(BaseLLM, BaseModel):
|
|
"""Wrapper around OpenAI Chat large language models.
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
environment variable ``OPENAI_API_KEY`` set with your API key.
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.llms import OpenAIChat
|
|
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
model_name: str = "gpt-3.5-turbo"
|
|
"""Model name to use."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
openai_api_key: Optional[str] = None
|
|
max_retries: int = 6
|
|
"""Maximum number of retries to make when generating."""
|
|
prefix_messages: List = Field(default_factory=list)
|
|
"""Series of messages for Chat input."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.ignore
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
openai_api_key = get_from_dict_or_env(
|
|
values, "openai_api_key", "OPENAI_API_KEY"
|
|
)
|
|
try:
|
|
import openai
|
|
|
|
openai.api_key = openai_api_key
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import openai python package. "
|
|
"Please it install it with `pip install openai`."
|
|
)
|
|
try:
|
|
values["client"] = openai.ChatCompletion
|
|
except AttributeError:
|
|
raise ValueError(
|
|
"`openai` has no `ChatCompletion` attribute, this is likely "
|
|
"due to an old version of the openai package. Try upgrading it "
|
|
"with `pip install --upgrade openai`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
return self.model_kwargs
|
|
|
|
def _get_chat_params(
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
|
) -> Tuple:
|
|
if len(prompts) > 1:
|
|
raise ValueError(
|
|
f"OpenAIChat currently only supports single prompt, got {prompts}"
|
|
)
|
|
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
|
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
|
|
if stop is not None:
|
|
if "stop" in params:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
params["stop"] = stop
|
|
if params.get("max_tokens") == -1:
|
|
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
|
|
del params["max_tokens"]
|
|
return messages, params
|
|
|
|
def _generate(
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
|
) -> LLMResult:
|
|
messages, params = self._get_chat_params(prompts, stop)
|
|
if self.streaming:
|
|
response = ""
|
|
params["stream"] = True
|
|
for stream_resp in completion_with_retry(self, messages=messages, **params):
|
|
token = stream_resp["choices"][0]["delta"].get("content", "")
|
|
response += token
|
|
self.callback_manager.on_llm_new_token(
|
|
token,
|
|
verbose=self.verbose,
|
|
)
|
|
return LLMResult(
|
|
generations=[[Generation(text=response)]],
|
|
)
|
|
else:
|
|
full_response = completion_with_retry(self, messages=messages, **params)
|
|
return LLMResult(
|
|
generations=[
|
|
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
|
],
|
|
llm_output={"token_usage": full_response["usage"]},
|
|
)
|
|
|
|
async def _agenerate(
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
|
) -> LLMResult:
|
|
messages, params = self._get_chat_params(prompts, stop)
|
|
if self.streaming:
|
|
response = ""
|
|
params["stream"] = True
|
|
async for stream_resp in await acompletion_with_retry(
|
|
self, messages=messages, **params
|
|
):
|
|
token = stream_resp["choices"][0]["delta"].get("content", "")
|
|
response += token
|
|
if self.callback_manager.is_async:
|
|
await self.callback_manager.on_llm_new_token(
|
|
token,
|
|
verbose=self.verbose,
|
|
)
|
|
else:
|
|
self.callback_manager.on_llm_new_token(
|
|
token,
|
|
verbose=self.verbose,
|
|
)
|
|
return LLMResult(
|
|
generations=[[Generation(text=response)]],
|
|
)
|
|
else:
|
|
full_response = await acompletion_with_retry(
|
|
self, messages=messages, **params
|
|
)
|
|
return LLMResult(
|
|
generations=[
|
|
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
|
],
|
|
llm_output={"token_usage": full_response["usage"]},
|
|
)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{"model_name": self.model_name}, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "openai-chat"
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
"""Calculate num tokens with tiktoken package."""
|
|
# tiktoken NOT supported for Python 3.8 or below
|
|
if sys.version_info[1] <= 8:
|
|
return super().get_num_tokens(text)
|
|
try:
|
|
import tiktoken
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import tiktoken python package. "
|
|
"This is needed in order to calculate get_num_tokens. "
|
|
"Please it install it with `pip install tiktoken`."
|
|
)
|
|
# create a GPT-3.5-Turbo encoder instance
|
|
enc = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
|
|
|
# encode the text using the GPT-3.5-Turbo encoder
|
|
tokenized_text = enc.encode(text)
|
|
|
|
# calculate the number of tokens in the encoded text
|
|
return len(tokenized_text)
|