langchain/tests/unit_tests/agents/test_mrkl.py
Harrison Chase aad0a498ac
Harrison/output error (#3094)
Co-authored-by: yummydum <sumita@nowcast.co.jp>
2023-04-18 08:59:56 -07:00

134 lines
4.5 KiB
Python

"""Test MRKL functionality."""
from typing import Tuple
import pytest
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.output_parser import MRKLOutputParser
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.agents.tools import Tool
from langchain.prompts import PromptTemplate
from langchain.schema import AgentAction, OutputParserException
from tests.unit_tests.llms.fake_llm import FakeLLM
def get_action_and_input(text: str) -> Tuple[str, str]:
output = MRKLOutputParser().parse(text)
if isinstance(output, AgentAction):
return output.tool, str(output.tool_input)
else:
return "Final Answer", output.return_values["output"]
def test_get_action_and_input() -> None:
"""Test getting an action from text."""
llm_output = (
"Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA"
)
action, action_input = get_action_and_input(llm_output)
assert action == "Search"
assert action_input == "NBA"
def test_get_action_and_input_whitespace() -> None:
"""Test getting an action from text."""
llm_output = "Thought: I need to search for NBA\nAction: Search \nAction Input: NBA"
action, action_input = get_action_and_input(llm_output)
assert action == "Search"
assert action_input == "NBA"
def test_get_action_and_input_newline() -> None:
"""Test getting an action from text where Action Input is a code snippet."""
llm_output = (
"Now I need to write a unittest for the function.\n\n"
"Action: Python\nAction Input:\n```\nimport unittest\n\nunittest.main()\n```"
)
action, action_input = get_action_and_input(llm_output)
assert action == "Python"
assert action_input == "```\nimport unittest\n\nunittest.main()\n```"
def test_get_final_answer() -> None:
"""Test getting final answer."""
llm_output = (
"Thought: I need to search for NBA\n"
"Action: Search\n"
"Action Input: NBA\n"
"Observation: founded in 1994\n"
"Thought: I can now answer the question\n"
"Final Answer: 1994"
)
action, action_input = get_action_and_input(llm_output)
assert action == "Final Answer"
assert action_input == "1994"
def test_get_final_answer_new_line() -> None:
"""Test getting final answer."""
llm_output = (
"Thought: I need to search for NBA\n"
"Action: Search\n"
"Action Input: NBA\n"
"Observation: founded in 1994\n"
"Thought: I can now answer the question\n"
"Final Answer:\n1994"
)
action, action_input = get_action_and_input(llm_output)
assert action == "Final Answer"
assert action_input == "1994"
def test_get_final_answer_multiline() -> None:
"""Test getting final answer that is multiline."""
llm_output = (
"Thought: I need to search for NBA\n"
"Action: Search\n"
"Action Input: NBA\n"
"Observation: founded in 1994 and 1993\n"
"Thought: I can now answer the question\n"
"Final Answer: 1994\n1993"
)
action, action_input = get_action_and_input(llm_output)
assert action == "Final Answer"
assert action_input == "1994\n1993"
def test_bad_action_input_line() -> None:
"""Test handling when no action input found."""
llm_output = "Thought: I need to search for NBA\n" "Action: Search\n" "Thought: NBA"
with pytest.raises(OutputParserException):
get_action_and_input(llm_output)
def test_bad_action_line() -> None:
"""Test handling when no action input found."""
llm_output = (
"Thought: I need to search for NBA\n" "Thought: Search\n" "Action Input: NBA"
)
with pytest.raises(OutputParserException):
get_action_and_input(llm_output)
def test_from_chains() -> None:
"""Test initializing from chains."""
chain_configs = [
Tool(name="foo", func=lambda x: "foo", description="foobar1"),
Tool(name="bar", func=lambda x: "bar", description="foobar2"),
]
agent = ZeroShotAgent.from_llm_and_tools(FakeLLM(), chain_configs)
expected_tools_prompt = "foo: foobar1\nbar: foobar2"
expected_tool_names = "foo, bar"
expected_template = "\n\n".join(
[
PREFIX,
expected_tools_prompt,
FORMAT_INSTRUCTIONS.format(tool_names=expected_tool_names),
SUFFIX,
]
)
prompt = agent.llm_chain.prompt
assert isinstance(prompt, PromptTemplate)
assert prompt.template == expected_template