forked from Archives/langchain
705431aecc
Co-authored-by: Ankush Gola <ankush.gola@gmail.com>
138 lines
2.8 KiB
Plaintext
138 lines
2.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "39af9ecd",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Word Documents\n",
|
|
"\n",
|
|
"This covers how to load Word documents into a document format that we can use downstream."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "721c48aa",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import UnstructuredWordDocumentLoader"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "9d3d0e35",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredWordDocumentLoader(\"example_data/fake.docx\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "06073f91",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "c9adc5cb",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "525d6b67",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Retain Elements\n",
|
|
"\n",
|
|
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "064f9162",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredWordDocumentLoader(\"example_data/fake.docx\", mode=\"elements\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "abefbbdb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "a547c534",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0)"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data[0]"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.13"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|